Skip to main content

Advertisement

Log in

Clearance of experimental cutaneous Staphylococcus aureus infections in mice

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Staphylococcal skin infections are quite common in human patients. These infections often clear spontaneously, but may also progress locally and/or disseminate to cause serious and sometimes fatal deep infections. The present studies were undertaken to examine the clearance phase of experimental cutaneous Staphylococcus aureus infections in a mouse model system. Previous work in this system has shown that staphylococci applied to the skin rapidly disseminate to the spleen and kidney. In the present experiments the bacteria were found to persist at the skin infection site at a time (8 days after inoculation) when they had disappeared from the spleen and kidney. Examination of the infected skin at earlier times revealed rapid (within 6 h) invasion into the stratum corneum, stratum Malpighii, and dermis, but subsequent redistribution of bacteria (at 1–2 days) to more superficial sites, particularly crusts located just above the skin surface. The crusts seen in these infections were of two distinct types, which were termed type 1 and type 2. Type 1 crusts appeared first, consisted of bacteria, inflammatory cells, and debris, and developed over an intact epidermis. Type 2 crusts arose from the process of dermal necrosis previously reported to take place at 2 days in this model system. In the latter situation the bacteria were not really cleared from the epidermis and dermis; rather those layers were transformed into a superficial crust that contained the bacteria. Deep hair follicle infections in the dermis were found in these infections, but they did not persist and did not seem to be a reservoir for organisms in the dermis. Resolution of these experimental infections appeared to involve redistribution of invading bacteria to more superficial locations in crusts above the skin surface, marked proliferation of the epidermis, loss of the bacteria-laden crusts from the skin, and eventual healing of the cutaneous damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abe Y, Akiyama H, Arata J (1993) Furuncle-like lesions in mouse experimental skin infections with Staphylococcus aureus. J Dermatol 20:198–202

    CAS  PubMed  Google Scholar 

  2. Berk SH, Penneys NS, Weinstein GD (1976) Epidermal activity in annular dermatophytosis. Arch Dermatol 112:485–488

    Article  CAS  PubMed  Google Scholar 

  3. Bibel DJ, Aly R, Shah S, Shinefeld HR (1993) Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol 73:407–411

    CAS  PubMed  Google Scholar 

  4. Blaiotta G, Ercolini D, Pennacchia C, Fusco V, Casaburi A, Pepe O, Villani F (2004) PCR detection of staphylococcal enterotoxin genes in Staphylococcus spp. strains isolated from meat and dairy products. Evidence for new variants of seG and seI in S. aureus AB-8802. J Appl Microbiol 97:719–730

    Article  CAS  PubMed  Google Scholar 

  5. Callegan MC, Hobden JA, Hill JM, Insler MS, O’Callaghan RJ (1992) Topical antibiotic therapy for the treatment of experimental Staphylococcus aureus keratitis. Investig Ophthalmol Vis Sci 33:3017–3023

    CAS  Google Scholar 

  6. Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Orlando F, Mocchegiani F, Silvestri C, Licci A, Lukasiak J, Saba V, Scalise G (2005) Temporin A alone and in combination with imipenem reduces lethality in a mouse model of staphylococcal sepsis. J Infect Dis 192:1613–1620

    Article  CAS  PubMed  Google Scholar 

  7. Cartlidge P (2000) The epidermal barrier. Semin Neonatol 5:273–280

    Article  CAS  PubMed  Google Scholar 

  8. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    Article  CAS  PubMed  Google Scholar 

  9. Gorwitz RJ (2008) A review of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections. Pediatr Infect Dis J 27:1–7

    Article  PubMed  Google Scholar 

  10. Hahn BL, Bischof TS, Sohnle PG (2008) Superficial exudates of neutrophils prevent invasion of Bacillus anthracis bacilli into abraded skin of resistant mice. Int J Exp Pathol 89:180–187

    Article  CAS  PubMed  Google Scholar 

  11. Hahn BL, Onunkwo CC, Watts CJ, Sohnle PG (2009) Systemic dissemination and cutaneous damage in a mouse model of staphylococcal skin infections. Microb Pathog 47:16–23

    Article  CAS  PubMed  Google Scholar 

  12. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome—oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017

    CAS  PubMed  Google Scholar 

  13. Iwatsuki K, Yamasaki O, Morizane S, Oono T (2006) Staphylococcal cutaneous infections—invasion, evasion and aggression. J Dermatol Sci 42:203–214

    Article  CAS  PubMed  Google Scholar 

  14. Kil EH, Heymann WR, Weinberg JM (2008) Methicillin resistant Staphylococcus aureus : an update for the dermatologist. Part 1—epidemiology. Cutis 81:227–233

    PubMed  Google Scholar 

  15. Kil EH, Heymann WR, Weinberg JM (2008) Methicillin resistant staphylococcus aureus: an update for the dermatologist. Part 2—pathogenesis and cutaneous. Cutis 81:247–254

    PubMed  Google Scholar 

  16. Kligman AM (1956) Pathophysiology of ringworm infections in animals with skin cycles. J Invest Dermatol 27:171–185

    CAS  PubMed  Google Scholar 

  17. Kraft WG, Johnson PT, David BC, Morgan D (1986) Cutaneous infection in normal and immunocompromised mice. Infect Immun 52:707–713

    CAS  PubMed  Google Scholar 

  18. Kuehnert MJ, Kruszan-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, McDougal LK, Chaitran J, Jensen B, Fridkin SK, Killgore G, Tenover FC (2006) Prevalence of Staphylococcus aureus nasal colonization in the US, 2001–2006. J Infect Dis 193:172–179

    Article  CAS  PubMed  Google Scholar 

  19. Kugelberg E, Norstrom T, Petersen TK, Duvold T, Andersson DI, Hughes D (2005) Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 49:3435–3441

    Article  CAS  PubMed  Google Scholar 

  20. Lepper AWD (1974) Experimental bovine Trichophyton verrucosum infection. The cellular responses in primary lesions of the skin resulting from surface or intradermal inoculation. Res Vet Sci 16:287–298

    CAS  PubMed  Google Scholar 

  21. Lepper AWD, Anger HS (1976) Experimental bovine Trichophyton verrucosum infection. Comparison of the rate of epidermal cell proliferation and keratinization in non-infected and reinoculated cattle. Res Vet Sci 20:117–121

    CAS  PubMed  Google Scholar 

  22. Liu L, Wang L, Jia HP, Zhao C, Heng HHQ, Schutte BC, McCray PB Jr, Ganz T (1998) Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation. Gene 222:237–244

    Article  CAS  PubMed  Google Scholar 

  23. Madsen P, Rasmussen HH, Leffers H, Honore B, Celis JE (1992) Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein) that is highly upregulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol 99:299–305

    Article  CAS  PubMed  Google Scholar 

  24. Mayer-Scholl A, Averhoff P, Zychlinsky A (2004) How do neutrophils and pathogens interact? Curr Opin Microbiol 7:62–66

    Article  CAS  PubMed  Google Scholar 

  25. Molne L, Tarkowski A (2000) An experimental model of cutaneous infection induced by superantigen-producing Staphylococcus aureus. J Invest Dermatol 114:1120–1125

    Article  CAS  PubMed  Google Scholar 

  26. Molne L, Verdrengh M, Tarkowski A (2000) Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect Immun 68:6162–6167

    Article  CAS  PubMed  Google Scholar 

  27. Monecke S, Berger-Bachi B, Coombs G, Holmes A, Kay I, Kearns A, Linde HJ, O’Brien F, Slickers P, Ehricht R (2007) Comparative genomics and DNA array-based genotyping of pandemic Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin Microbiol Infect 13:236–249

    Article  CAS  PubMed  Google Scholar 

  28. Mylotte JM, McDermott C, Spooner JA (1987) Prospective study of 114 consecutive episodes of Staphylococcus aureus bacteremia. Rev Infect Dis 9:891–907

    CAS  PubMed  Google Scholar 

  29. Ray TL, Wuepper KD (1976) Experimental cutaneous candidiasis in rodents. J Invest Dermatol 66:29–33

    Article  CAS  PubMed  Google Scholar 

  30. Segal AW (2005) How do neutrophils kill microbes? Annu Rev Immunol 23:197–223

    Article  CAS  PubMed  Google Scholar 

  31. Singh G, Marples RR, Kligman AM (1971) Experimental Staphylococcus aureus infections in humans. J Invest Dermatol 57:149–162

    Article  CAS  PubMed  Google Scholar 

  32. Sohnle PG, Frank MM, Kirkpatrick CH (1976) Mechanisms involved in elimination of organisms from experimental cutaneous Candida albicans infections in guinea pigs. J Immunol 117:523–530

    CAS  PubMed  Google Scholar 

  33. Sohnle PG, Hahn BL (1989) Epidermal proliferation and the neutrophilic infiltrates of experimental cutaneous candidiasis in mice. Arch Dermatol Res 281:279–283

    Article  CAS  PubMed  Google Scholar 

  34. Sohnle PG, Hahn BL (1992) The fate of individual organisms during clearance of experimental cutaneous Candida albicans infections in mice. Acta Derm Venereol 72:241–244

    CAS  PubMed  Google Scholar 

  35. Sohnle PG, Kirkpatrick CH (1978) Epidermal proliferation in the defense against cutaneous candidiasis. J Invest Dermatol 70:130–133

    Article  CAS  PubMed  Google Scholar 

  36. Tsuruta D, Green KJ, Getsios S, Jones JCR (2002) The barrier function of skin—how to keep a tight lid on water loss. Trends Cell Biol 12:355–357

    Article  CAS  PubMed  Google Scholar 

  37. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344:11–16

    Article  Google Scholar 

  38. Watts CJ, Wagner DK, Sohnle PG (2009) Fungal infections, cutaneous. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier Science, Oxford, pp 382–388

    Chapter  Google Scholar 

  39. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762

    Article  PubMed  Google Scholar 

  40. Yee J, Giannias B, Kapadia B, Chartrand L, Christou NV (1994) Exudative neutrophils—modulation of microbicidal function in the inflammatory microenvironment. Arch Surg 129:99–105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Department of Veterans Affairs and by the NIH/NIAID Regional Center of Excellence for Bio-defense and Emerging Infectious Diseases Research (RCE) Program. The authors wish to acknowledge membership within and support from the Region V ‘Great Lakes’ RCE (NIH award 1-U54-AI-057153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Sohnle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onunkwo, C.C., Hahn, B.L. & Sohnle, P.G. Clearance of experimental cutaneous Staphylococcus aureus infections in mice. Arch Dermatol Res 302, 375–382 (2010). https://doi.org/10.1007/s00403-010-1030-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1030-y

Keywords

Navigation