Skip to main content

Advertisement

Log in

Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms

Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

COX-2:

Cyclooxygenase-2

EGCG:

Epigallocatechin-3-gallate

GSPs:

Grape seed proanthocyanidins

GTPs:

Green tea polyphenols

IL:

Interleukin

NER:

Nucleotide excision repair

NFκB:

Nuclear factor-kappaB

UV:

Ultraviolet

References

  1. Adhami VM, Afaq F, Ahmad N (2003) Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia 5:74–82

    PubMed  CAS  Google Scholar 

  2. Afaq F, Adhami VM, Ahmad N (2003) Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol 186:28–37

    Article  PubMed  CAS  Google Scholar 

  3. Aziz MH, Afaq F, Ahmad N (2005) Prevention of ultraviolet B radiation—damage by resveratrol in mouse skin is mediated via modulation in Survivin. Photochem Photobiol 81:25–31

    Article  PubMed  CAS  Google Scholar 

  4. Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int J Oncol 23:17–28

    PubMed  CAS  Google Scholar 

  5. Bachelor MA, Bowden GT (2004) UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol 14:131–138

    Article  PubMed  CAS  Google Scholar 

  6. Baliga MS, Katiyar SK (2006) Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci 5:243–253

    Article  PubMed  CAS  Google Scholar 

  7. Brash DE, Rudolph JA, Simon JA et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128

    Article  PubMed  CAS  Google Scholar 

  8. Buckman SY, Gresham A, Hale P et al (1998) COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19:723–729

    Article  PubMed  CAS  Google Scholar 

  9. Camouse MM, Domingo DS, Swain FR et al (2009) Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp Dermatol 18:522–526

    Article  PubMed  Google Scholar 

  10. Chapple KS, Cartwright EJ, Hawcroft G et al (2000) Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Am J Pathol 156:545–553

    PubMed  CAS  Google Scholar 

  11. Chatterjee ML, Agarwal R, Mukhtar H (1996) Ultraviolet B radiation-induced DNA lesions in mouse epidermis: an assessment using a novel 32P-postlabelling technique. Biochem Biophys Res Commun 229:590–595

    Article  PubMed  CAS  Google Scholar 

  12. Cowen EW, Billingsley EM (1999) Awareness of skin cancer by kidney transplant patients. J Am Acad Dermatol 40:697–701

    Article  PubMed  CAS  Google Scholar 

  13. de Gruijl FR, van der Leun JC (1994) Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of stratospheric ozone depletion. Health Phys 67:319–325

    PubMed  Google Scholar 

  14. de Gruijl FR (2000) Photocarcinogenesis: UVA vs UVB. Singlet oxygen, UVA, and ozone. Methods Enzymol 319:359–366

    Article  PubMed  Google Scholar 

  15. DiGiovanna JJ (1998) Posttransplantation skin cancer: scope of the problem, management and role for systemic retinoid chemoprevention. Transplant Proc 30:2771–2775

    Article  PubMed  CAS  Google Scholar 

  16. DiGiovanni J (1992) Multistage carcinogenesis in mouse skin. Pharmacol Ther 54:63–128

    Article  PubMed  CAS  Google Scholar 

  17. Donawho CK, Kripke ML (1991) Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 51:4176–4181

    PubMed  CAS  Google Scholar 

  18. Douki T, Reynaud-Angelin A, Cadet J et al (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226

    Article  PubMed  CAS  Google Scholar 

  19. Elmets CA, Singh D, Tubesing K et al (2001) Cutaneous photoprotection from ultraviolet injury by green tea polyphenols. J Am Acad Dermatol 44:425–432

    Article  PubMed  CAS  Google Scholar 

  20. Fortina AB, Caforio AL, Piaserico S (2000) Skin cancer in heart transplant recipients: frequency and risk factor analysis. J Heart Lung Transplant 19:249–255

    Article  PubMed  CAS  Google Scholar 

  21. Gu M, Dhanalakshmi S, Singh RP et al (2004) Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Res 64:6349–6356

    Article  Google Scholar 

  22. Gu M, Dhanalakshmi S, Singh RP et al (2005) Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Cancer Epidemiol Biomarkers Prev 14:1344–1349

    Article  PubMed  CAS  Google Scholar 

  23. Halliwell B, Gutteridge JMC, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    PubMed  CAS  Google Scholar 

  24. Hojo M, Morimoto T, Maluccio M (1999) Cyclosporin induces cancer progression by a cell-autonomous mechanism. Nature (Lond) 397:530–534

    Article  CAS  Google Scholar 

  25. Hruza LL, Pentland AP (1993) Mechanisms of UV-induced inflammation. J Invest Dermatol 100:35S–41S

    Article  PubMed  CAS  Google Scholar 

  26. Huang CC, Fang JY, Wu WB et al (2005) Protective effects of (−)-epicatechin-3-gallate on UVA-induced damage in HaCaT keratinocytes. Arch Dermatol Res 296:473–481

    Article  PubMed  CAS  Google Scholar 

  27. Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, Chen YT, Hung CF (2007) (−)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT keratinocytes. Molecules 12:1845–1858

    Article  PubMed  CAS  Google Scholar 

  28. Ichihashi M, Ueda M, Budiyanto A (2003) UV-induced skin damage. Toxicology 189:21–39

    Article  PubMed  CAS  Google Scholar 

  29. Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  30. Jeon HY, Kim JK, Kim WG et al (2009) Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage. Skin Pharmacol Physiol 22:137–14131

    Article  PubMed  CAS  Google Scholar 

  31. Katiyar SK (2002) Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin. Int J Oncol 21:1213–1222

    PubMed  CAS  Google Scholar 

  32. Katiyar SK (2005) Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects. Int J Oncol 26(1):169–176

    PubMed  CAS  Google Scholar 

  33. Katiyar SK, Afaq F, Azizuddin K et al (2001) Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol 176:107–110

    Article  CAS  Google Scholar 

  34. Katiyar SK, Afaq F, Perez A et al (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287–294

    Article  PubMed  CAS  Google Scholar 

  35. Katiyar SK, Agarwal R, Mukhtar H (1994) Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett 79:61–66

    Article  PubMed  CAS  Google Scholar 

  36. Katiyar SK, Ahmad N, Mukhtar H (2000) Green tea and skin. Arch Dermatol 136:989–994

    Article  PubMed  CAS  Google Scholar 

  37. Katiyar SK, Challa A, McCormick TS et al (1999) Prevention of UVB-induced immunosuppression in mice by green tea polyphenol (−)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production. Carcinogenesis 20:2117–2124

    Article  PubMed  CAS  Google Scholar 

  38. Katiyar SK, Elmets CA (2001) Green tea polyphenolic antioxidants and skin photoprotection. Int J Oncol 18:1307–1313

    PubMed  CAS  Google Scholar 

  39. Katiyar SK, Elmets CA, Agarwal R et al (1995) Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem Photobiol 62:855–861

    PubMed  CAS  Google Scholar 

  40. Katiyar SK, Korman NJ, Mukhtar H et al (1997) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89:556–566

    Article  PubMed  CAS  Google Scholar 

  41. Katiyar SK, Matsui MS, Elmets CA et al (1999) Polyphenolic antioxidant (−)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem Photobiol 69:148–153

    PubMed  CAS  Google Scholar 

  42. Katiyar SK, Matsui MS, Mukhtar H (2000) Kinetics of UV light-induced cyclobutane pyrimidine dimers in human skin in vivo: an immunohistochemical analysis of both epidermis and dermis. Photochem Photobiol 72:788–793

    Article  PubMed  CAS  Google Scholar 

  43. Katiyar SK, Mukhtar H (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen presenting cells and oxidative stress. J Leukoc Biol 69:719–726

    PubMed  CAS  Google Scholar 

  44. Katiyar SK, Bergamo BM, Vayalil PK, Elmets CA (2001) Green tea polyphenols: DNA photodamage and photoimmunology. J Photochem Photobiol B 65:109–114

    Article  PubMed  CAS  Google Scholar 

  45. Katiyar SK, Mukhtar H (1997) Tea antioxidants in cancer chemoprevention. J Cell Biochem Suppl 27:59–67

    Article  PubMed  CAS  Google Scholar 

  46. Katiyar SK, Perez A, Mukhtar H (2000) Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clinical Cancer Res 6:3864–3869

    CAS  Google Scholar 

  47. Kim J, Hwang J-S, Cho Y-K et al (2001) Protective effects of (−)-epigallocatechin-3-gallate on UVA- and UVB-induced skin damage. Skin Pharmacol Appl Skin Physiol 14:11–19

    PubMed  CAS  Google Scholar 

  48. Kinlen L, Sheil A, Peta J (1979) Collaborative United Kingdom–Australia study of cancer in patients treated with immunosuppressive drugs. Br Med J 1461–1466

  49. Klebanoff SJ (1988) In: Gallin JI, Goldstein IM, Snyderman R (eds) Inflammation: basic principles and clinical correlates. Raven Press, New York, pp. 391–444

  50. Kligman LH, Akin FJ, Kligman AM (1980) Sunscreens prevent ultraviolet photocarcinogenesis. J Am Acad Dermatol 3:30–35

    Article  PubMed  CAS  Google Scholar 

  51. Kripke ML (1990) Photoimmunology. Photochem Photobiol 52:919–924

    Article  PubMed  CAS  Google Scholar 

  52. Kripke ML, Cox PA, Alas LG et al (1992) Pyrimidine dimers in DNA initiated systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci USA 89:7516–7520

    Article  PubMed  CAS  Google Scholar 

  53. Krutmann J (2001) The role of UVA rays in skin aging. Eur J Dermatol 11:170–171

    PubMed  CAS  Google Scholar 

  54. Langenbach R, Loftin CD, Lee C et al (1999) Cyclooxygenase-deficient mice. A summary of their characteristics and susceptibilities to inflammation and carcinogenesis. Ann N Y Acad Sci 889:52–61

    Article  PubMed  CAS  Google Scholar 

  55. Li YH, Wu Y, Wei HC et al (2009) Protective effects of green tea extracts on photoaging and photoimmunosuppression. Skin Res Technol 15:338–345

    Article  PubMed  Google Scholar 

  56. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    PubMed  CAS  Google Scholar 

  57. Mantena SK, Katiyar SK (2006) Grape seed proanthocyanidins inhibit UV radiation-induced oxidative stress and activation of MAPK and NF-κB signaling in human epidermal keratinocytes. Free Radic Biol Med 40:1603–1614

    Article  PubMed  CAS  Google Scholar 

  58. Maziere C, Dantin F, Dubois F et al (2000) Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocytes. Free Radic Biol Med 28:1430–1437

    Article  PubMed  CAS  Google Scholar 

  59. Meeran SM, Akhtar S, Katiyar SK (2009) Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Invest Dermatol 129:1258–1270

    Article  PubMed  CAS  Google Scholar 

  60. Meeran SM, Katiyar SK (2008) Proanthocyanidins inhibit mitogenic and survival-signaling in vitro and tumor growth in vivo. Front Biosci 13:887–897

    Article  PubMed  CAS  Google Scholar 

  61. Meeran SM, Mantena SK, Elmets CA et al (2006) (−)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 66:5512–5520

    Article  PubMed  CAS  Google Scholar 

  62. Meeran SM, Mantena SK, Meleth S et al (2006) Interleukin-12-deficient mice are at greater risk of ultraviolet radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Mol Cancer Ther 5:825–832

    Article  PubMed  CAS  Google Scholar 

  63. Meeran SM, Mantena SK, Katiyar SK (2006) Prevention of ultraviolet radiation-induced immunosuppression by (−)-epigallocatechin-3-gallate in mice is mediated through interleukin 12-dependent DNA repair. Clin Cancer Res 12:2272–2280

    Article  PubMed  CAS  Google Scholar 

  64. Meunier L, Raison-Peyron N, Meynadier J (1998) UV-induced immunosuppression and skin cancers. Rev Med Interne 19:247–254

    Article  PubMed  CAS  Google Scholar 

  65. Miller DL, Weinstock MA (1994) Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 30:774–778

    Article  PubMed  CAS  Google Scholar 

  66. Mittal A, Elmets CA, Katiyar SK (2003) Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24:1379–1388

    Article  PubMed  CAS  Google Scholar 

  67. Mittal A, Piyathilake C, Hara Y et al (2003) Exceptionally high protection of photocarcinogenesis by topical application of (−)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5:555–565

    PubMed  CAS  Google Scholar 

  68. Mnich CD, Hoek KS, Virkki LV et al (2009) Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls. Exp Dermatol 18:69–77

    Article  PubMed  CAS  Google Scholar 

  69. Moore JO, Wang Y, Stebbins WG et al (2006) Photoprotective effect of isoflavone genistein on ultraviolet B induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinogenesis 27:1627–1635

    Article  PubMed  CAS  Google Scholar 

  70. Morley N, Clifford T, Salter L et al (2005) The green tea polyphenol (−)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage. Photodermatol Photoimmunol Photomed 21:15–22

    Article  PubMed  CAS  Google Scholar 

  71. Mukhtar H, Elmets CA (1996) Photocarcinogenesis: mechanisms, models and human health implications. Photochem Photobiol 63:355–447

    Article  Google Scholar 

  72. Otley CC, Pittelkow MR (2000) Skin cancer in liver transplant recipients. Liver Transpl 6:253–262

    PubMed  CAS  Google Scholar 

  73. Park K, Lee JH (2008) Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway. Oncol Rep 19:413–417

    PubMed  CAS  Google Scholar 

  74. Parrish JA (1983) Photoimmunology. Adv Exp Med Biol 160:91–108

    PubMed  CAS  Google Scholar 

  75. Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  CAS  Google Scholar 

  76. Runger TM (1999) Role of UVA in the pathogenesis of melanoma and non-melanoma skin cancer. A short review. Photodermatol Photoimmunol Photomed 15:212–216

    Article  PubMed  CAS  Google Scholar 

  77. Scalbert A, Morand C, Manach C et al (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56:276–282

    Article  PubMed  CAS  Google Scholar 

  78. Schwarz A, Maeda A, Gan D et al (2008) Green tea phenol extracts reduce UVB-induced DNA damage in human cells via interleukin-12. Photochem Photobiol 84:350–355

    Article  PubMed  CAS  Google Scholar 

  79. Schwarz A, Maeda A, Kernebeck K et al (2005) Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J Exp Med 201:173–179

    Article  PubMed  CAS  Google Scholar 

  80. Schwarz A, Stander S, Berneburg M et al (2002) Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol 4:26–31

    Article  PubMed  CAS  Google Scholar 

  81. Scotto J, Fears TR (1978) Skin cancer epidemiology: research needs. Natl Cancer Inst Monogr 50:169–177

    PubMed  Google Scholar 

  82. Sharma SD, Meeran SM, Katiyar SK (2007) Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-κB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 6:995–1005

    Article  PubMed  CAS  Google Scholar 

  83. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    Article  PubMed  CAS  Google Scholar 

  84. Strom S (1996) In: Weber R, Miller M, Goepfert H (eds) Basal and squamous cell skin cancers of the head and neck, Williams and Wilkins, Baltimore, pp 1–7

  85. Taylor CR, Stern RS, Leyden JJ et al (1990) Gilchrest, photoaging/photodamage and photoprotection. J Am Acad Dermatol 22:1–15

    Article  PubMed  CAS  Google Scholar 

  86. Timares L, Katiyar SK, Elmets CA (2008) DNA damage, apoptosis and Langerhans cells-activators of UV-induced immune tolerance. Photochem Photobiol 84:422–436

    Article  PubMed  CAS  Google Scholar 

  87. Ullrich SE (1995) Potential for immunotoxicity due to environmental exposure to ultraviolet radiation. Hum Exp Toxicol 14:89–91

    Article  PubMed  CAS  Google Scholar 

  88. Urbach F (1991) Incidences of nonmelanoma skin cancer. Dermatol Clin 9:751–755

    PubMed  CAS  Google Scholar 

  89. Vanderveen EE, Grekin RC, Swanson NA et al (1986) Arachidonic acid metabolites in cutaneous carcinomas. Arch Dermatol 122:407–412

    Article  PubMed  CAS  Google Scholar 

  90. Vayalil PK, Elmets CA, Katiyar SK (2003) Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 24:927–936

    Article  PubMed  Google Scholar 

  91. Vayalil PK, Mittal A, Hara Y et al (2004) Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 122:1480–1487

    Article  PubMed  CAS  Google Scholar 

  92. Wang SQ, Setlow R, Berwick M (2001) Ultraviolet A and melanoma: a review. J Am Acad Dermatol 44:837–846

    Article  PubMed  CAS  Google Scholar 

  93. Wang Y, Zhang X, Lebwohl M et al (1998) Inhibition of ultraviolet B (UVB)-induced c-fos and c-jun expression in vivo by a tyrosine kinase inhibitor genistein. Carcinogenesis 19:649–654

    Article  PubMed  CAS  Google Scholar 

  94. Wang ZY, Huang MT, Ferraro T et al (1992) Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice. Cancer Res 52:1162–1170

    PubMed  CAS  Google Scholar 

  95. Wang ZY, Huang MT, Ho CT et al (1992) Inhibitory effect of green tea on the growth of established skin papillomas in mice. Cancer Res 52:6657–6665

    PubMed  CAS  Google Scholar 

  96. Wei H, Ca Q, Rahn R et al (1998) DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage. Biochemistry 37(18):6485–6490

    Article  PubMed  CAS  Google Scholar 

  97. Wei H, Saladi R, Lu Y et al (2003) Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr 133(11 Suppl 1):3811S–3819S

    PubMed  CAS  Google Scholar 

  98. Wei H, Zhang X, Zhao JF et al (1999) Scavenging of hydrogen peroxide and inhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radic Biol Med 26:1427–1435

    Article  PubMed  CAS  Google Scholar 

  99. Yang CS, Wang ZY (1993) Tea and cancer. J Natl Cancer Inst 85:1038–1049

    Article  PubMed  CAS  Google Scholar 

  100. Yarosh D, Alas LG, Yee V et al (1992) Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res 52:4227–4231

    PubMed  CAS  Google Scholar 

  101. Yoshikawa T, Rae V, Bruins-Slot W (1990) Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol 95:530–536

    Article  PubMed  CAS  Google Scholar 

  102. Zhao JF, Zhang YJ, Jin XH et al (1999) Green tea protects against psoralen plus ultraviolet A-induced photochemical damage to skin. J Invest Dermatol 113:1070–1075

    Article  PubMed  CAS  Google Scholar 

  103. Zi SX, Ma HJ, Li Y et al (2009) Oligomeric proanthocyanidins from grape seeds effectively inhibit ultraviolet-induced melanogenesis of human melanocytes in vitro. Int J Mol Med 23:197–204

    PubMed  CAS  Google Scholar 

  104. Ziegler A, Jonason AS, Leffell DJ et al (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work reported from Dr Katiyar’s laboratory was supported by the funds from National Institutes of Health (CA104428, AT002536) and Veteran Affairs Merit Review Award (S.K. Katiyar). The content of this article does not necessarily reflect the views or policies of the funding sources. Grateful thanks are also due to our former and current colleagues and postdoctoral fellows for their outstanding contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Katiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, J.A., Katiyar, S.K. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302, 71–83 (2010). https://doi.org/10.1007/s00403-009-1001-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-1001-3

Keywords

Navigation