Abstract
The purpose of this study was to evaluate in vivo the effects of micropuncture injections of stabilized hyaluronic acid-based gel of non-animal origin (NASHA™, Restylane Vital™) on skin elasticity, a major aspect of skin ageing. Patients (n = 19) underwent a series of three treatment sessions, spaced 4 weeks apart, with NASHA injected into the lower facial cheeks. Using the suction principle, 12 parameters describing the viscoelastic properties of the skin were assessed, before each treatment session and at follow-up visits 4 and 16 weeks after the last treatment. Treatment with NASHA significantly increased skin firmness and improved its viscoelastic recovery capacities. The most significant differences from baseline were noted at the end of the study. The changes observed in this study may underlie some of the cosmetic improvements noted after treatment with NASHA.
Similar content being viewed by others
References
Agache PG, Monneur C, Leveque JL et al (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232
Barel AO, Courage W, Clarys P (2006) Suction chamber method for measurement of skin mechanics: the new digital version of the cutometer. In: Serup J, Jemec G, Grove G (eds) Handbook of non-invasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 583–592
Baumann L (2007) Skin ageing and its treatment. J Pathol 211:241–251
Bilston LE (2006) Viscoelasticity. In: Akay M (ed) Wiley encyclopedia of biomedical engineering, vol 6. Wiley, Hoboken, pp 3775–3779
Courage & Khazaka Electronic GmbH, Cologne, Germany. User Manual Cutometer® MPA 580. MPA CT Deutsch 12/2002
Cua AB, Wilhelm KP, Maibach HI (1990) Elastic properties of human skin: relation to age, sex, and anatomical region. Arch Dermatol Res 282:283–288
Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Invest Dermatol 73:84–87
Dover JS, Carruthers A, Carruthers J et al (2005) Clinical use of Restylane. Skin Therapy Lett 10:5–7
Escoffier C, de Rigal J, Rochefort A et al (1989) Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 93:353–357
Fotiadis DI, Protopappas VC, Massalas CV (2006) Elasticity (7. Elasticity of biological materials). In: Akay M (ed) Wiley encyclopedia of biomedical engineering, vol 2. Wiley, Hoboken, pp 1179–1188
Fusco FJ (2001) The aging face and skin: common signs and treatment. Clin Plast Surg 28:1–12
Gray WR, Sandberg LB, Foster JA (1973) Molecular model for elastin structure and function. Nature 246:461–466
Holbrook KA, Wolff K (1993) The structure and development of skin. In: Fitzpatrick TB, Eisen AZ, Wolff K et al (eds) Dermatology in general medicine, 4th edn. McGraw-Hill, New York, pp 97–145
Kerscher M, Bayrhammer J, Reuther T (2008) Rejuvenating influence of a stabilized hyaluronic acid-based gel of nonanimal origin on facial skin aging. Dermatol Surg 34:720–726
Koch RJ, Cheng ET (1999) Quantification of skin elasticity changes associated with pulsed carbon dioxide laser skin resurfacing. Arch Facial Plast Surg 1:272–275
Mahoney MG, Brennan D, Starcher B et al (2009) Extracellular matrix in cutaneous ageing: the effects of 0.1% copper-zinc malonate-containing cream on elastin biosynthesis. Exp Dermatol 18:205–211
McCullough JL, Kelly KM (2006) Prevention and treatment of skin aging. Ann NY Acad Sci 1067:323–331
Meyer LJ, Stern R (1994) Age-dependent changes of hyaluronan in human skin. J Invest Dermatol 102:385–389
O’goshi K (2006) Suction chamber method for measurement of skin mechanics: the Cutometer. In: Serup J, Jemec G, Grove G (eds) Handbook of non-invasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 579–582
Oxlund H, Manschot J, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomech 21:213–218
Silver FH, Seehra GP, Freeman JW et al (2002) Viscoelastic properties of young and old human dermis: A proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 86:1978–1985
Starcher BC (1977) Determination of the elastin content of tissues by measuring desmosine and isodesmosine. Anal Biochem 79:11–15
Sumino H, Ichikawa S, Abe M et al (2004) Effects of aging, menopause, and hormone replacement therapy on forearm skin elasticity in women. J Am Geriatr Soc 52:945–949
Takema Y, Yorimoto Y, Kawai M et al (1994) Age-related changes in the elastic properties and thickness of human facial skin. Br J Dermatol 131:641–648
Wang F, Garza LA, Kang S et al (2007) In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Arch Dermatol 143:155–163
Weindl G, Schaller M, Schafer-Korting M et al (2004) Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects. Skin Pharmacol Physiol 17:207–213
Wilhelm KP, Cua AB, Maibach HI (1991) Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol 127:1806–1809
Acknowledgments
NASHA gel used in this study was provided by Q-Med AB, Uppsala, Sweden.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reuther, T., Bayrhammer, J. & Kerscher, M. Effects of a three-session skin rejuvenation treatment using stabilized hyaluronic acid-based gel of non-animal origin on skin elasticity: a pilot study. Arch Dermatol Res 302, 37–45 (2010). https://doi.org/10.1007/s00403-009-0988-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00403-009-0988-9