Archives of Dermatological Research

, Volume 301, Issue 5, pp 329–336 | Cite as

Protective role of adipose-derived stem cells and their soluble factors in photoaging

  • Won-Serk Kim
  • Byung-Soon ParkEmail author
  • Jong-Hyuk SungEmail author
Mini Review


As individuals age, the skin undergoes changes, such as irregular pigmentation, thinning and loss of elasticity, that are due to both genetic and environmental factors. These changes may worsen, progressing to precancerous and cancerous diseases. Various medical treatments and topical cosmeceuticals have been used to treat some symptoms of photoaging, however, the results have been less than satisfactory. Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, adipose-derived stem cells (ADSCs), display multi-lineage developmental plasticity and secrete various growth factors that control and manage the damaged neighboring cells. Recently, the production and secretion of growth factors has been reported as an essential function of ADSCs, and diverse regenerative effects of ADSCs have been demonstrated in the skin. For example, conditioned medium from ADSCs (ADSC-CM) stimulated both collagen synthesis and migration of dermal fibroblasts, which improved the wrinkling and accelerated wound healing in animal models. ADSC-CM also inhibited melanogenesis in B16 melanoma cells, and protected dermal fibroblasts from oxidative stress induced by chemicals and UVB irradiation. Therefore, ADSCs and soluble factors show promise for the treatment of photoaging, and this review introduces recent research developments of the ADSCs and ADSC-derived secretory factors regarding this issue.


Adipose-derived stem cell Photoaging Anti-wrinkling Antioxidant Whitening 



This study was supported by a grant from Ministry of Knowledge Economy of Korea (0801DG10141).


  1. 1.
    Altman AM, Matthias N, Yan Y, Song YH, Bai X, Chiu ES, Slakey DP, Alt EU (2008) Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29:1431–1442. doi: 10.1016/j.biomaterials.2007.11.026 PubMedCrossRefGoogle Scholar
  2. 2.
    Baregamian N, Song J, Jeschke MG, Evers BM, Chung DH (2006) IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res 136:31–37. doi: 10.1016/j.jss.2006.04.028 PubMedCrossRefGoogle Scholar
  3. 3.
    Boquest AC, Noer A, Collas P (2006) Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Rev 2:319–329. doi: 10.1007/BF02698059 PubMedCrossRefGoogle Scholar
  4. 4.
    Cameron K (2005) Review: chemotherapy plus supportive care improves survival and quality of life in advanced or metastatic gastrointestinal cancer more than supportive care alone. Evid Based Nurs 8:18. doi: 10.1136/ebn.8.1.18 PubMedCrossRefGoogle Scholar
  5. 5.
    Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886PubMedCrossRefGoogle Scholar
  6. 6.
    Chung JH, Lee SH, Youn CS, Park BJ, Kim KH, Park KC, Cho KH, Eun HC (2001) Cutaneous photodamage in Koreans: influence of sex, sun exposure, smoking, and skin color. Arch Dermatol 137:1043–1051PubMedGoogle Scholar
  7. 7.
    Chung JH (2003) Photoaging in Asians. Photodermatol Photoimmunol Photomed 19:109–121. doi: 10.1034/j.1600-0781.2003.00027.x PubMedCrossRefGoogle Scholar
  8. 8.
    Crisostomo PR, Markel TA, Wang M, Lahm T, Lillemoe KD, Meldrum DR (2007) In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 142:215–221. doi: 10.1016/j.surg.2007.04.013 PubMedCrossRefGoogle Scholar
  9. 9.
    Fitzpatrick RE, Rostan EF (2003) Reversal of photodamage with topical growth factors: a pilot study. J Cosmet Laser Ther 5:25–34. doi: 10.1080/14764170310000817 PubMedCrossRefGoogle Scholar
  10. 10.
    Grether-Beck S, Wlaschek M, Krutmann J, Scharffetter-Kochanek K (2005) Photodamage and photoaging-prevention and treatment. J Dtsch Dermatol Ges 3(Suppl 2):S19–S25. doi: 10.1111/j.1610-0387.2005.04394.x PubMedGoogle Scholar
  11. 11.
    Huang T, He D, Kleiner G, Kuluz J (2007) Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 30(Suppl 1):S35–S40PubMedGoogle Scholar
  12. 12.
    Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297. doi: 10.1002/jcb.20904 PubMedCrossRefGoogle Scholar
  13. 13.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. doi: 10.1634/stemcells.2005-0342 PubMedCrossRefGoogle Scholar
  14. 14.
    Kida H, Yoshida M, Hoshino S, Inoue K, Yano Y, Yanagita M, Kumagai T, Osaki T, Tachibana I, Saeki Y, Kawase I (2005) Protective effect of IL-6 on alveolar epithelial cell death induced by hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 288:L342–L349. doi: 10.1152/ajplung.00016.2004 PubMedCrossRefGoogle Scholar
  15. 15.
    Kim DS, Park SH, Park KC (2004) Transforming growth factor-beta1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol 36:1482–1491PubMedGoogle Scholar
  16. 16.
    Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49:133–142. doi: 10.1016/j.jdermsci.2007.08.004 PubMedCrossRefGoogle Scholar
  17. 17.
    Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53:96–102. doi: 10.1016/j.jdermsci.2008.08.007 PubMedCrossRefGoogle Scholar
  18. 18.
    Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24. doi: 10.1016/j.jdermsci.2007.05.018 PubMedCrossRefGoogle Scholar
  19. 19.
    Kim WS, Park SH, Ahn SJ, Kim HK, Park JS, Lee GY, Kim KJ, Whang KK, Kang SH, Park BS, Sung JH (2008) Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1. Biol Pharm Bull 31:606–610. doi: 10.1248/bpb.31.606 PubMedCrossRefGoogle Scholar
  20. 20.
    Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549. doi: 10.1161/01.CIR.0000124062.31102.57 PubMedCrossRefGoogle Scholar
  21. 21.
    Lee JH, Kemp DM (2006) Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun 341:882–888. doi: 10.1016/j.bbrc.2006.01.038 PubMedCrossRefGoogle Scholar
  22. 22.
    Lazennec G, Jorgensen C (2008) Concise review: adult multipotent stromal cells and cancer: risk or benefit. Stem Cells 26:1387–1394. doi: 10.1634/stemcells.2007-1006 PubMedCrossRefGoogle Scholar
  23. 23.
    Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55:663–667. doi: 10.1007/s000180050322 PubMedCrossRefGoogle Scholar
  24. 24.
    Martinez-Esparza M, Jimenez-Cervantes C, Beermann F, Aparicio P, Lozano JA, Garcia-Borron JC (1997) Transforming growth factor-beta1 inhibits basal melanogenesis in B16/F10 mouse melanoma cells by increasing the rate of degradation of tyrosinase and tyrosinase-related protein-1. J Biol Chem 272:3967–3972. doi: 10.1074/jbc.272.7.3967 PubMedCrossRefGoogle Scholar
  25. 25.
    Martinez-Esparza M, Solano F, Garcia-Borron JC (1999) Independent regulation of tyrosinase by the hypopigmenting cytokines TGF beta1 and TNF alpha and the melanogenic hormone alpha-MSH in B16 mouse melanocytes. Cell Mol Biol 45:991–1000PubMedGoogle Scholar
  26. 26.
    Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS (2008) Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg 34:1323–1326. doi: 10.1111/j.1524-4725.2008.34283.x PubMedCrossRefGoogle Scholar
  27. 27.
    Patel KM, Crisostomo P, Lahm T, Markel T, Herring C, Wang M, Meldrum KK, Lillemoe KD, Meldrum DR (2007) Mesenchymal stem cells attenuate hypoxic pulmonary vasoconstriction by a paracrine mechanism. J Surg Res 143:281–285. doi: 10.1016/j.jss.2006.11.006 PubMedCrossRefGoogle Scholar
  28. 28.
    Peacock CD, Watkins DN (2008) Cancer stem cells and the ontogeny of lung cancer. J Clin Oncol 26:2883–2889. doi: 10.1200/JCO.2007.15.2702 PubMedCrossRefGoogle Scholar
  29. 29.
    Porada CD, Zanjani ED, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1:365–369PubMedGoogle Scholar
  30. 30.
    Rahman ZA, Soory M (2006) Antioxidant effects of glutathione and IGF in a hyperglycaemic cell culture model of fibroblasts: some actions of advanced glycaemic end products (AGE) and nicotine. Endocr Metab Immune Disord Drug Targets 6:279–286. doi: 10.2174/187153006778250037 PubMedCrossRefGoogle Scholar
  31. 31.
    Regenbrecht CR, Lehrach H, Adjaye J (2008) Stemming cancer: functional genomics of cancer stem cells in solid tumors. Stem Cell Rev 4:319–328PubMedCrossRefGoogle Scholar
  32. 32.
    Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1 PubMedCrossRefGoogle Scholar
  33. 33.
    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221. doi: 10.1056/NEJMoa060186 PubMedCrossRefGoogle Scholar
  34. 34.
    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Werner N, Haase J, Neuzner J, Germing A, Mark B, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27:2775–2783. doi: 10.1093/eurheartj/ehl388 PubMedCrossRefGoogle Scholar
  35. 35.
    Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528–536PubMedGoogle Scholar
  36. 36.
    Sun T, Sun BC, Ni CS, Zhao XL, Wang XH, Qie S, Zhang DF, Gu Q, Qi H, Zhao N (2008) Pilot study on the interaction between B16 melanoma cell-line and bone-marrow derived mesenchymal stem cells. Cancer Lett 263:35–43. doi: 10.1016/j.canlet.2007.12.015 PubMedCrossRefGoogle Scholar
  37. 37.
    Tsao YP, Ho TC, Chen SL, Cheng HC (2006) Pigment epithelium-derived factor inhibits oxidative stress-induced cell death by activation of extracellular signal-regulated kinases in cultured retinal pigment epithelial cells. Life Sci 79:545–550. doi: 10.1016/j.lfs.2006.01.041 PubMedCrossRefGoogle Scholar
  38. 38.
    Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421. doi: 10.1161/01.RES.0000225952.61196.39 PubMedCrossRefGoogle Scholar
  39. 39.
    Vaughan MB, Ramirez RD, Brown SA, Yang JC, Wright WE, Shay JW (2004) A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Res 7:99–110. doi: 10.1089/1549168041552982 PubMedCrossRefGoogle Scholar
  40. 40.
    Wang M, Tsai BM, Crisostomo PR, Meldrum DR (2006) Pretreatment with adult progenitor cells improves recovery and decreases native myocardial proinflammatory signaling after ischemia. Shock 25:454–459PubMedCrossRefGoogle Scholar
  41. 41.
    Watson D, Keller GS, Lacombe V, Fodor PB, Rawnsley J, Lask GP (1999) Autologous fibroblasts for treatment of facial rhytids and dermal depressions. Arch Facial Plast Surg 1:165–170. doi: 10.1001/archfaci.1.3.165 PubMedCrossRefGoogle Scholar
  42. 42.
    Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659. doi: 10.1634/stemcells.2007-0226 PubMedCrossRefGoogle Scholar

Related articles recently published in Archives of Dermatological Research (selected by the journal’s editorial staff):

  1. 43.
    Kwon OS, Yoo HG, Han JH, Lee SR, Chung JH, Eun HC (2008) Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Arch Dermatol Res 300:47–52PubMedCrossRefGoogle Scholar
  2. 44.
    Tanaka H, Yamaba H, Kosugi N, Mizutani H, Nakata S (2008) Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression. Arch Dermatol Res 300(Suppl 1):S57–S64PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of DermatologyKangbuk Samsung Hospital, School of Medicine, Sungkyunkwan UniversitySeoulKorea
  2. 2.Leaders ClinicSeoulKorea
  3. 3.Division of Stem Cell ResearchProstemics Research InstituteSeoulKorea

Personalised recommendations