Skip to main content
Log in

Reliability and validity of a bioimpedance measurement device in the assessment of UVR damage to the skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Ultraviolet radiation (UVR) is the primary cause of skin cancers. However, it is difficult to evaluate the amount of UVR absorbed into the skin retrospectively. Therefore, objective and non-invasive quantitative method would be valuable for epidemiological UVR exposure assessment. Photodamage reduces the amount of bound water in the skin, and thus, measuring the skin’s dielectric constant can provide an opportunity for assessing the cumulative UVR exposure. The purpose of the study was to assess the reliability and validity of the bioimpedance device, Moisture Meter-D. The measurements were performed on 100 subjects at three separate measurement times. A questionnaire was used to obtain information on the host factors and on the past UVR exposure. The biological samples, to determine the elastin proportion of the dermis, were collected. Some long-term as well as seasonal variations in the dielectric constants were detected. Also, a weak relationship between the dielectric constant and the UVR exposure indicators and host factors was observed. The MoistureMeter-D appears not to measure structural alterations in the skin caused by photodamage, and thus it is not a valid instrument for the assessment of photodamage, i.e., past UVR exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

UVR:

Ultraviolet radiation

CMM:

Cutaneous malignant melanoma

NMSC:

Non-melanoma skin cancer

SCC:

Squamous cell carcinoma

BCC:

Basal cell carcinoma

EM:

Electromagnetic

MHz:

Megahertz

s.d:

Standard deviation;

95% CI:

95% Confidence interval

References

  1. Almahroos M, Kurban AK (2004) Ultraviolet carcinogenesis in nonmelanoma skin cancer part II: review and update on epidemiologic correlations. Skinmed 3:132–139

    Article  PubMed  Google Scholar 

  2. Armstrong BK, English DR (1996) Cutaneous malignant melanoma. In: Schottenfeld D, Fraumeni J (eds) Cancer epidemiology and prevention, 2nd edn. Oxford University Press, New York

    Google Scholar 

  3. Berneburg M, Plettenberg H, Krutmann J (2000) Photoaging of human skin. Photodermatol Photoimmunol Photomed 16:239–244

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein EF, Chen YQ, Kopp JB, Fisher L, Brown DB, Hahn PJ et al (1996) Long-term sun exposure alters the collagen of the papillary dermis. J Am Acad Dermatol 34:209–218

    Article  PubMed  CAS  Google Scholar 

  5. Burdette EC, Cain FL, Seals J (1980) In vivo probe measurement technique for determing dielectric properties at VHF through microwave frequency. IEEE Trans Microw Theory Tech MTT-28:414–427

    Google Scholar 

  6. Cockburn M, Hamilton A, Mack T (2001) Recall bias in self-reported melanoma risk factors. Am J Epidemiol 153:1021–1026

    Article  PubMed  CAS  Google Scholar 

  7. Diffey BL (1987) A comparison of dosimeters used for solar ultraviolet radiometry. Photochem Photobiol 46:55–60

    Article  PubMed  CAS  Google Scholar 

  8. Finnish Cancer Registry. Basic statistics. Available from: URL: http://www.cancerregisty.fi

  9. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S et al (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462–1470

    Article  PubMed  CAS  Google Scholar 

  10. Foster KR, Schwan HP (1986) Dielectric properties of tissues. In: Polk C, Postow E (eds) CRC handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 27–96

    Google Scholar 

  11. Frances C, Boisnic S, Hartmann DJ, Dautzenberg B, Branchet MC, Charpentier YL et al (1991) Changes in the elastic tissue of the non-sun-exposed skin of cigarette smokers. Br J Dermatol 125:43–47

    Article  PubMed  CAS  Google Scholar 

  12. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissue: I. Literature survey. Phys Med Biol 41:2231–2249

    Article  PubMed  CAS  Google Scholar 

  13. Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21:610–613

    Article  PubMed  CAS  Google Scholar 

  14. Gniadecka M, Jemec GBE (1998) Quantitative evaluation of chronological ageing and photoageing in vivo: studies on skin echogenicity and thickness. Br J Dermatol 139:815–821

    Article  PubMed  CAS  Google Scholar 

  15. Green AC, Whiteman DC (2006) Solar radiation. In: Schottenfeld D, Fraumeni J (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York

    Google Scholar 

  16. Haapasaari K-M, Raudaskoski T, Kallioinen M, Suvanto-Luukkonen E, Kauppila A, Läärä E et al (1997) Systemic therapy with estrogen or estrogen with progestin has no effect on skin collagen in postmenopausal women. Maturitas 27:153–162

    Article  PubMed  CAS  Google Scholar 

  17. Herlihy E, Gies PH, Roy CR, Jones M (1994) Personal dosimetry of solar UV radiation for different outdoor activities. Photochem Photobiol 60:288–294

    Article  PubMed  CAS  Google Scholar 

  18. International Agency for Research on Cancer (1992) Solar and ultraviolet radiation. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol 55. IARC Press, Lyon

  19. Karagas MR, Weinstock MA, Nelson HH (2006) Keratinocyte carcinomas (basal and squamous skin carcinomas of the skin. In: Schottenfeld D, Fraumeni J (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York

    Google Scholar 

  20. Kennedy C, Bastiaens MT, Bajdik CD, Willemze R, Westendorp RGJ, Bavinck JNB (2003) Effect of smoking and sun on the aging skin. J Invest Dermatol 120:548–554

    Article  PubMed  CAS  Google Scholar 

  21. Kojo K, Jansen CT, Nybom P, Huurto L, Laihia J, Ilus T et al (2006) Population exposure to ultraviolet radiation in Finland 1920–1995: exposure trends and a time-series analysis of exposure and cutaneous melanoma incidence. Environ Res 101:123–131

    Article  PubMed  CAS  Google Scholar 

  22. Larko O, Diffey BL (1986) Occupational exposure to ultraviolet radiation in dermatology departments. Br J Dermatol 114:479–484

    Article  PubMed  CAS  Google Scholar 

  23. Marks R, Edwards C (1992) The measurement of photodamage. Br J Dermatol 127(Suppl 41):7–13

    PubMed  Google Scholar 

  24. Moehrle M, Dennenmoser B, Garbe C (2003) Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. Int J Cancer 103:775–778

    Article  PubMed  CAS  Google Scholar 

  25. Moehrle M, Garbe C (2000) Personal UV dosimetry by Bacillus subtilis spore films. Dermatology 200:1–5

    Article  PubMed  CAS  Google Scholar 

  26. Nuutinen J (1997) Skin dielectric constant at high radiofrequency with special emphasis on radiation-induced late skin reaction. Kuopio University Publications C. Natural and Environmental Sciences 55, Ph.D. thesis, 64p

  27. Nuutinen J, Ikäheimo R, Lahtinen T (2004) Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat. Physiol Meas 25:447–454

    Article  PubMed  CAS  Google Scholar 

  28. Nuutinen J, Lahtinen T, Turunen M, Alanen E, Tenhunen M, Usenius T et al (1998) A dielectric method for measuring early and late reactions in irradiated human skin. Radiother Oncol 47:249–254

    Article  PubMed  CAS  Google Scholar 

  29. Oikarinen A (1990) The aging of skin: chronoaging versus photoaging. Photodermatol Photoimmunol Photomed 7:3–4

    PubMed  CAS  Google Scholar 

  30. Oikarinen A, Kallioinen M (1989) A biochemical and immunohistochemical study of collagen in sun-exposed and protected skin. Photodermatol 6:24–31

    PubMed  CAS  Google Scholar 

  31. Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933–970

    Article  PubMed  CAS  Google Scholar 

  32. Pinnell SR (2003) Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J Am Acad Dermatol 48:1–19

    Article  PubMed  Google Scholar 

  33. Rosso S, Miñarro R, Schraub S, Tumino R, Franceschi S, Zanetti R (2002) Reproducibility of skin characteristic measurements and reported sun exposure history. Int J Epidemiol 31:439–446

    Article  PubMed  Google Scholar 

  34. Sandby-Møller J, Thieden E, Philipsen PA, Schmidt G, Wulf HC (2004) Dermal echogenicity: a biological indicator of individual cumulative UVR exposure? Arch Dermatol Res 295:498–504

    Article  PubMed  Google Scholar 

  35. Simonen P, O’Brien M, Hamilton C, Ashcroft J, Denhan J (1997) Normal variation in cutaneous blood content and red blood cell velocity in humans. Physiol Meas 18:155–170

    Article  PubMed  CAS  Google Scholar 

  36. STATA 9.0. StataCorp (2005) Stata Statistical Software, College Station, Texas 77845, USA. http://www.stata.com/support/faqs/res/cite.html. Cited 2005

  37. Stuchly MA, Stuchly SS (1980) Coaxial line reflection method for measuring dielectric properties of biological substances at radio and microwave frequencies—a review. IEE Trans Inst Meas IM-29:176–183

    Google Scholar 

  38. Tamura T, Tenhunen M, Lahtinen T, Repo T, Schwan H.P (1994) Modelling of the dielectric properties of normal and irradiated skin. Phys Med Biol 39:927–936

    Article  PubMed  CAS  Google Scholar 

  39. Thieden E, Agren MS, Wulf HC (2000) The wrist is a reliable body site for personal dosimetry of ultraviolet radiation. Photodermatol Photoimmunol Photomed 16:57–61

    Article  PubMed  CAS  Google Scholar 

  40. de Vries E, Coebergh JW (2004) Cutaneous malignant melanoma in Europe. Eur J Cancer 40:2355–2366

    Article  PubMed  Google Scholar 

  41. Weinstock MA (1992) Assessment of sun sensitivity by questionnaire: validity of items and formulations of a prediction rule. J Clin Epidemiol 45:547–552

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank medical student Pekka Leinonen from the Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland for the assistance when analyzing the proportion of elastin from the tissue samples and Dr Paula Martikainen at Department of Pathology, University of Tampere, Tampere, Finland, for her help in processing the tissue samples. We thank the Cancer Society of Finland for their financial support. The work of Katja Kojo was possible with the financial support of Doctoral Programs in Public Health. We also like to thank the personnel of Delfin Technologies Ltd, Kuopio, Finland, for their most helpful practical assistance during this study. At Delfin Technologies Ltd, we especially thank Dr Jouni Nuutinen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Kojo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojo, K., Lahtinen, T., Oikarinen, A. et al. Reliability and validity of a bioimpedance measurement device in the assessment of UVR damage to the skin. Arch Dermatol Res 300, 253–261 (2008). https://doi.org/10.1007/s00403-008-0844-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-008-0844-3

Keywords

Navigation