Skip to main content

Advertisement

Log in

CD83: an update on functions and prospects of the maturation marker of dendritic cells

  • Review Article
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

CD83 is one of the most characteristic cell surface markers for fully matured dendritic cells (DCs). In their function as antigen presenting cells they induce T-cell mediated immune responses. In this review we provide an overview on well described and proposed functions of this molecule as well as on very recent insights and new hypothesis. Already the CD83 messenger RNA processing differs remarkably from the processing of other cellular mRNAs: instead of the usual TAP mRNA export pathway, the CD83 mRNA is exported by the specific CRM1-mediated pathway, utilized only by a minority of cellular mRNAs. On the protein level, two different isoforms of CD83 exist: a membrane-bound and a soluble form. The isoforms are generated by different subsets of cells, including DCs, T-cells and B-cells, and also differ in their biological function. While the membrane-bound CD83 is of immune stimulatory capacity, activates T-cells and is important for the generation of thymocytes, the soluble CD83 has the opposite effect and has an immune inhibitory capacity. Due to its immune inhibitory function, CD83 has great potential for treatment of autoimmune diseases, for organ transplantations, and for immunotherapy, just to name a few examples. Moreover, some viruses prevent recognition by the host’s immune system by specifically targeting CD83 surface expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cells

ARE:

AU-rich element

DCs:

Dendritic cells

eIF-5A:

Eucaryotic initiation factor 5A

EAE:

Experimental autoimmune encephalomyelitis

ERG:

Early response gene

hCD83ext:

Soluble CD83 (sCD83)

HCMV:

Human cytomegalovirus

HIV-1:

Human immunodeficiency virus type 1

HSV-1:

Herpes simplex virus type 1

iDCs:

Immature dendritic cells

mCD83:

Membrane-bound CD83

mDCs:

Mature dendritic cells

mRNA:

Messenger RNA (ribonucleic acid)

NPC:

Nuclear pore complex

PBMCs:

Peripheral blood mononuclear cells

PRE:

Posttranscriptional regulatory element (inside the CD83 mRNA)

sCD83:

Soluble CD83 (often referred to as hCD83ext)

References

  1. Al-Alwan MM, Liwski RS, Haeryfar SM, Baldridge WH, Hoskin DW, Rowden G, West KA (2003) Cutting edge: dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J Immunol 171(9):4479–4483

    PubMed  CAS  Google Scholar 

  2. Al-Alwan MM, Rowden G, Lee TD, West KA (2001) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166(3):1452–1456

    PubMed  CAS  Google Scholar 

  3. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285(5428):736–739

    PubMed  CAS  Google Scholar 

  4. Antic D, Keene JD (1997) Embryonic lethal abnormal visual RNA-binding proteins involved in growth, differentiation, and posttranscriptional gene expression. Am J Hum Genet 61(2):273–278

    PubMed  CAS  Google Scholar 

  5. Ardavin C (1997) Thymic dendritic cells. Immunol Today 18(7):350–361

    PubMed  CAS  Google Scholar 

  6. Arrode G, Boccaccio C, Abastado JP, Davrinche C (2002) Cross-presentation of human cytomegalovirus pp65 (UL83) to CD8+ T cells is regulated by virus-induced, soluble-mediator-dependent maturation of dendritic cells. J Virol 76(1):142–150

    PubMed  CAS  Google Scholar 

  7. Bakheet T, Williams BR, Khabar KS (2003) ARED 2.0: an update of AU-rich element mRNA database. Nucleic Acids Res 31(1):421–423

    PubMed  CAS  Google Scholar 

  8. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    PubMed  CAS  Google Scholar 

  9. Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells—a review. Virus Genes 26(2):119–130

    PubMed  CAS  Google Scholar 

  10. Bednenko J, Cingolani G, Gerace L (2003) Nucleocytoplasmic transport: navigating the channel. Traffic 4(3):127–135

    PubMed  CAS  Google Scholar 

  11. Berchtold S, Jones T, Muhl-Zurbes P, Sheer D, Schuler G, Steinkasserer A (1999) The human dendritic cell marker CD83 maps to chromosome 6p23. Ann Hum Genet 63(Pt 2):181–183

    PubMed  CAS  Google Scholar 

  12. Berchtold S, Muhl-Zurbes P, Heufler C, Winklehner P, Schuler G, Steinkasserer A (1999) Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett 461(3):211–216

    PubMed  CAS  Google Scholar 

  13. Berchtold S, Muhl-Zurbes P, Maczek E, Golka A, Schuler G, Steinkasserer A (2002) Cloning and characterization of the promoter region of the human CD83 gene. Immunobiology 205(3):231–246

    PubMed  CAS  Google Scholar 

  14. Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6(3):124–133

    PubMed  CAS  Google Scholar 

  15. Brennan CM, Steitz JA (2001) HuR and mRNA stability. Cell Mol Life Sci 58(2):266–277

    PubMed  CAS  Google Scholar 

  16. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285(5428):732–736

    PubMed  CAS  Google Scholar 

  17. Burns S, Thrasher AJ (2004) Dendritic cells: the bare bones of immunity. Curr Biol 14(22):R965–R967

    PubMed  CAS  Google Scholar 

  18. Cao W, Lee SH, Lu J (2005) CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J 385(Pt 1):85–93

    PubMed  CAS  Google Scholar 

  19. Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A (1999) Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med 189(5):821–829

    PubMed  CAS  Google Scholar 

  20. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470

    PubMed  CAS  Google Scholar 

  21. Davis DM, Dustin ML (2004) What is the importance of the immunological synapse? Trends Immunol 25(6):323–327

    PubMed  CAS  Google Scholar 

  22. Dilioglou S, Cruse JM, Lewis RE (2003) Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 75(3):217–227

    PubMed  CAS  Google Scholar 

  23. Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G (2005) Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol 174(11):6672–6676

    PubMed  CAS  Google Scholar 

  24. Dudziak D, Kieser A, Dirmeier U, Nimmerjahn F, Berchtold S, Steinkasserer A, Marschall G, Hammerschmidt W, Laux G, Bornkamm GW (2003) Latent membrane protein 1 of Epstein–Barr virus induces CD83 by the NF-{kappa}B signaling pathway. J Virol 77(15):8290–8298

    PubMed  CAS  Google Scholar 

  25. Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1(1):23–29

    PubMed  CAS  Google Scholar 

  26. Elfgang C, Rosorius O, Hofer L, Jaksche H, Hauber J, Bevec D (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234

    PubMed  CAS  Google Scholar 

  27. Elliott DJ, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear export. Curr Opin Genet Dev 4(2):305–309

    PubMed  CAS  Google Scholar 

  28. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766

    PubMed  CAS  Google Scholar 

  29. Fan XC, Steitz JA (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95(26):15293–15298

    PubMed  CAS  Google Scholar 

  30. Flores-Romo L (2001) In vivo maturation and migration of dendritic cells. Immunology 102(3):255–262

    PubMed  CAS  Google Scholar 

  31. Fries B, Heukeshoven J, Hauber I, Gruttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem (in press)

  32. Fujimoto Y, Tedder TF (2006) CD83: a regulatory molecule of the immune system with great potential for therapeutic application. J Med Dent Sci 53(2):85–91

    PubMed  Google Scholar 

  33. Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF (2002) CD83 expression influences CD4+ T cell development in the thymus. Cell 108(6):755–767

    PubMed  CAS  Google Scholar 

  34. Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, Andrews DM, Chen Y, McEuen M, Tang P, Rhinehart RL, Proll S, Paeper B, Brunkow ME, Grandea AG III, Howard ED, Walker DE, Charmley P, Jonas M, Shaw S, Latham JA, Ramsdell F (2004) A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol 173(5):2995–3001

    PubMed  CAS  Google Scholar 

  35. Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8):1953–1971

    PubMed  Google Scholar 

  36. Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23

    PubMed  CAS  Google Scholar 

  37. Gunn MD (2003) Chemokine mediated control of dendritic cell migration and function. Semin Immunol 15(5):271–276

    PubMed  CAS  Google Scholar 

  38. Hirano N, Butler MO, Xia Z, Ansen S, von Bergwelt-Baildon MS, Neuberg D, Freeman GJ, Nadler LM (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107(4):1528–1536

    PubMed  CAS  Google Scholar 

  39. Hock BD, O’Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG, Summers KL (2006) Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 67(1):57–60

    PubMed  CAS  Google Scholar 

  40. Hock BD, Haring LF, Steinkasserer A, Taylor KG, Patton WN, McKenzie JL (2004) The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leuk Res 28(3):237–241

    PubMed  CAS  Google Scholar 

  41. Hock BD, Kato M, McKenzie JL, Hart DNJ (2001) A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol 13(7):959–967

    PubMed  CAS  Google Scholar 

  42. Iking-Konert C, Wagner C, Denefleh B, Hug F, Schneider M, Andrassy K, Hansch GM (2002) Up-regulation of the dendritic cell marker CD83 on polymorphonuclear neutrophils (PMN): divergent expression in acute bacterial infections and chronic inflammatory disease. Clin Exp Immunol 130(3):501–508

    PubMed  CAS  Google Scholar 

  43. Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM (1989) Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341(6244):746–749

    PubMed  CAS  Google Scholar 

  44. Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96(1):5–7

    PubMed  CAS  Google Scholar 

  45. King PH, Levine TD, Fremeau RT Jr, Keene JD (1994) Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3’ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14(4):1943–1952

    PubMed  CAS  Google Scholar 

  46. Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80(4):823–833

    PubMed  CAS  Google Scholar 

  47. Kotzor N, Lechmann M, Zinser E, Steinkasserer A (2004) The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology 209(1–2):129–140

    PubMed  CAS  Google Scholar 

  48. Kozlow EJ, Wilson GL, Fox CH, Kehrl JH (1993) Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood 81(2):454–461

    PubMed  CAS  Google Scholar 

  49. Kruse M, Rosorius O, Kratzer F, Bevec D, Kuhnt C, Steinkasserer A, Schuler G, Hauber J (2000) Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med 191(9):1581–1590

    PubMed  CAS  Google Scholar 

  50. Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A (2000) Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74(15):7127–7136

    PubMed  CAS  Google Scholar 

  51. Lanzavecchia A, Sallusto F (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2(6):487–492

    PubMed  CAS  Google Scholar 

  52. Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106(3):263–266

    PubMed  CAS  Google Scholar 

  53. Lechmann M, Kotzor N, Zinser E, Prechtel AT, Sticht H, Steinkasserer A (2005) CD83 is a dimer: comparative analysis of monomeric and dimeric isoforms. Biochem Biophys Res Commun 329(1):132–139

    PubMed  CAS  Google Scholar 

  54. Lechmann M, Kremmer E, Sticht H, Steinkasserer A (2002) Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Exp Purif 24(3):445–452

    CAS  Google Scholar 

  55. Lechmann M, Krooshoop DJEB, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, Schuler G, Steinkasserer A (2001) The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 194(12):1813–1821

    PubMed  CAS  Google Scholar 

  56. Lekkerkerker AN, van Kooyk Y, Geijtenbeek TB (2006) Viral piracy: HIV-1 targets dendritic cells for transmission. Curr HIV Res 4(2):169–176

    PubMed  CAS  Google Scholar 

  57. Lin CL, Suri RM, Rahdon RA, Austyn JM, Roake JA (1998) Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 28(12):4114–4122

    PubMed  CAS  Google Scholar 

  58. Matzinger P, Guerder S (1989) Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 338(6210):74–76

    PubMed  CAS  Google Scholar 

  59. McKinsey TA, Chu ZL, Tedder TF, Ballard DW (2000) Transcription factor NF-[kappa]B regulates inducible CD83 gene expression in activated T lymphocytes. Mol Immunol 37(12–13):783–788

    PubMed  CAS  Google Scholar 

  60. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    PubMed  CAS  Google Scholar 

  61. Mitchell P, Tollervey D (2001) mRNA turnover. Curr Opin Cell Biol 13(3):320–325

    PubMed  CAS  Google Scholar 

  62. Muthumani K, Hwang DS, Choo AY, Mayilvahanan S, Dayes NS, Thieu KP, Weiner DB (2005) HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17(2):103–116

    PubMed  CAS  Google Scholar 

  63. Oehler L, Majdic O, Pickl WF, Stockl J, Riedl E, Drach J, Rappersberger K, Geissler K, Knapp W (1998) Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187(7):1019–1028

    PubMed  CAS  Google Scholar 

  64. Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD (2004) Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173(7):4553–4560

    PubMed  CAS  Google Scholar 

  65. Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2(4):227–238

    PubMed  CAS  Google Scholar 

  66. Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6(3):115–123

    PubMed  CAS  Google Scholar 

  67. Park MH, Wolff EC, Folk JE (1993) Hypusine: its post-translational formation in eukaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4(2):95–104

    PubMed  CAS  Google Scholar 

  68. Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stulke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925

    PubMed  CAS  Google Scholar 

  69. Prechtel AT, Turza NM, Kobelt DJ, Eisemann JI, Coffin RS, McGrath Y, Hacker C, Ju X, Zenke M, Steinkasserer A (2005) Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86(Pt 6):1645–1657

    PubMed  CAS  Google Scholar 

  70. Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A (2006) Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods 311(1–2):139–152

    PubMed  CAS  Google Scholar 

  71. Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H, Schonrich G (2001) Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15(6):997–1009

    PubMed  CAS  Google Scholar 

  72. Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13(5):267–274

    PubMed  CAS  Google Scholar 

  73. Randolph GJ, Sanchez-Schmitz G, Angeli V (2005) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin Immunopathol 26(3):273–287

    PubMed  Google Scholar 

  74. Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol 17(3):269–273

    PubMed  CAS  Google Scholar 

  75. Reed R, Magni K (2001) A new view of mRNA export: separating the wheat from the chaff. Nat Cell Biol 3(9):E201–E204

    PubMed  CAS  Google Scholar 

  76. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393(6684):474–478

    PubMed  CAS  Google Scholar 

  77. Rinaldo CR Jr, Piazza P (2004) Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 12(7):337–345

    PubMed  CAS  Google Scholar 

  78. Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96(8):639–655

    PubMed  CAS  Google Scholar 

  79. Rosorius O, Reichart B, Kratzer F, Heger P, Dabauvalle MC, Hauber J (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt 14):2369–2380

    PubMed  CAS  Google Scholar 

  80. Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253

    PubMed  CAS  Google Scholar 

  81. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769

    PubMed  CAS  Google Scholar 

  82. Sallusto F, Lanzavecchia A (2002) The instructive role of dendritic cells on T-cell responses. Arthritis Res 4(Suppl 3):S127–S132

    PubMed  Google Scholar 

  83. Scholler N, Hayden-Ledbetter M, Hellstrom KE, Hellstrom I, Ledbetter JA (2001) CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol 166(6):3865–3872

    PubMed  CAS  Google Scholar 

  84. Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168(6):2599–2602

    PubMed  CAS  Google Scholar 

  85. Senechal B, Boruchov AM, Reagan JL, Hart DN, Young JW (2004) Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood 103(11):4207–4215

    PubMed  CAS  Google Scholar 

  86. Shutt DC, Daniels KJ, Carolan EJ, Hill AC, Soll DR (2000) Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cell Motil Cytoskeleton 46(3):200–221

    PubMed  CAS  Google Scholar 

  87. Sorg UR, Morse TM, Patton WN, Hock BD, Angus HB, Robinson BA, Colls BM, Hart DN (1997) Hodgkin’s cells express CD83, a dendritic cell lineage associated antigen. Pathology 29(3):294–299

    PubMed  CAS  Google Scholar 

  88. Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R, Mantovani A (1998) Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161(3):1083–1086

    PubMed  CAS  Google Scholar 

  89. Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20(3):151–160

    PubMed  CAS  Google Scholar 

  90. Steinman RM (2000) DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100(5):491–494

    PubMed  CAS  Google Scholar 

  91. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    PubMed  CAS  Google Scholar 

  92. Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789

    PubMed  CAS  Google Scholar 

  93. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223(1):1–15

    PubMed  CAS  Google Scholar 

  94. Toka FN, Suvas S, Rouse BT (2004) CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against Herpes simplex virus type 1. J Virol 78(23):13082–13089

    PubMed  CAS  Google Scholar 

  95. Twist CJ, Beier DR, Disteche CM, Edelhoff S, Tedder TF (1998) The mouse Cd83 gene: structure, domain organization, and chromosome localization. Immunogenetics 48(6):383–393

    PubMed  CAS  Google Scholar 

  96. Vicente-Manzanares M, Sancho D, Yanez-Mo M, Sanchez-Madrid F (2002) The leukocyte cytoskeleton in cell migration and immune interactions. Int Rev Cytol 216:233–289

    Article  PubMed  CAS  Google Scholar 

  97. Vinciguerra P, Stutz F (2004) mRNA export: an assembly line from genes to nuclear pores. Curr Opin Cell Biol 16(3):285–292

    PubMed  CAS  Google Scholar 

  98. Weissman D, Li Y, Ananworanich J, Zhou LJ, Adelsberger J, Tedder TF, Baseler M, Fauci AS (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is infectable with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92(3):826–830

    PubMed  CAS  Google Scholar 

  99. Wilflingseder D, Mullauer B, Schramek H, Banki Z, Pruenster M, Dierich MP, Stoiber H (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173(12):7497–7505

    PubMed  CAS  Google Scholar 

  100. Wilson GM, Brewer G (1999) Identification and characterization of proteins binding A + U-rich elements. Methods 17(1):74–83

    PubMed  CAS  Google Scholar 

  101. Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2(4):237–246

    PubMed  CAS  Google Scholar 

  102. Wolenski M, Cramer SO, Ehrlich S, Steeg C, Fleischer B, von Bonin A (2003) Enhanced activation of CD83-positive T cells. Scand J Immunol 58(3):306–311

    PubMed  CAS  Google Scholar 

  103. Yang S, Yang Y, Raycraft J, Zhang H, Kanan S, Guo Y, Ronai Z, Hellstrom I, Hellstrom KE (2004) Melanoma cells transfected to express CD83 induce antitumor immunity that can be increased by also engaging CD137. Proc Natl Acad Sci 101(14):4990–4995

    PubMed  CAS  Google Scholar 

  104. Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149(2):735–742

    PubMed  CAS  Google Scholar 

  105. Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93(6):2588–2592

    PubMed  CAS  Google Scholar 

  106. Zhou LJ, Tedder TF (1995) Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol 154(8):3821–3835

    PubMed  CAS  Google Scholar 

  107. Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86(9):3295–3301

    PubMed  CAS  Google Scholar 

  108. Zinser E, Lechmann M, Golka A, Hock B, Steinkasserer A (2006) Determination of the inhibitory activity and biological half-live of soluble CD83: comparison of wild type and mutant isoforms. Immunobiology 211(6–8):449–453

    PubMed  CAS  Google Scholar 

  109. Zinser E, Lechmann M, Golka A, Lutz MB, Steinkasserer A (2004) Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med 200(3):345–351

    PubMed  CAS  Google Scholar 

  110. Zinser E, Turza N, Steinkasserer A (2004) CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology 209(1–2):89–97

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize for all the interesting studies from many other colleagues that were not mentioned in this review due to space limitations. Furthermore, the authors thank Dr. Kerstin Zander for critical reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft, SFB 643, Grant A4, by the “Interdisziplinäres Zentrum für Klinische Forschung, IZKF”, University Hospital Erlangen, Grant B6, and by the “Bundesministerium für Bildung und Forschung” (BMBF), “Nationales Genomforschungsnetz-2” (NGFN-2), Grant NIE-S10T02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander T. Prechtel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prechtel, A.T., Steinkasserer, A. CD83: an update on functions and prospects of the maturation marker of dendritic cells. Arch Dermatol Res 299, 59–69 (2007). https://doi.org/10.1007/s00403-007-0743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-007-0743-z

Keywords

Navigation