Skip to main content

Advertisement

Log in

Activation of PKCδ and p38δ MAPK during okadaic acid dependent keratinocyte apoptosis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

A Correction to this article was published on 03 August 2023

This article has been updated

Abstract

There is substantial interest in identifying agents that differentially activate keratinocyte differentiation versus apoptosis. Okadaic acid (OA) is a tumor promoter in mouse skin that also stimulates apoptosis of murine keratinocytes. OA also enhances human keratinocyte differentiation; however, the impact of OA treatment on apoptosis in these cells has not been examined. We show that OA promotes normal human keratinocyte apoptosis as evidenced by increased accumulation of cells having sub-G1/S DNA content, decreased mitochondrial integrity, increased annexin V binding, increased cytoplasmic cytochrome c level, and increased procaspase 3 and PARP cleavage. Cyclin A, cyclin D1, cdk2, cdk4, p53 and p21 levels are reduced. These changes are associated with release of the PKCδ catalytic domain and increased phosphorylation of PKCδ-T505-responses consistent with PKCδ activation. In contrast, phosphorylation of PKCδ-Y311 is not increased. The apoptotic response is enhanced in OA treated cells in the presence of p38δ, a PKCδ target. OA treatment selectively activated p38δ, and OA-dependent apoptosis is not inhibited by treatment with the p38α/β inhibitor, SB203580. These findings are consistent with the idea that the response is mediated by p38δ. Our data indicate that OA is an agent that regulates both keratinocyte differentiation and apoptosis, and that this regulation is mediated via activation of a PKCδ/p38δ signaling cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Alibardi L, Tschachler E, Eckhart L (2005) Distribution of caspase-14 in epidermis and hair follicles is evolutionarily conserved among mammals. Anat Rec A Discov Mol Cell Evol Biol 286:962–973

    PubMed  Google Scholar 

  2. Asher G, Tsvetkov P, Kahana C, Shaul Y (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19:316–321

    Article  PubMed  CAS  Google Scholar 

  3. Balasubramanian S, Eckert RL (2004) Green tea polyphenol and curcumin inversely regulate human involucrin promoter activity via opposing effects on CCAAT/enhancer-binding protein function. J Biol Chem 279:24007–24014

    Article  PubMed  CAS  Google Scholar 

  4. Balasubramanian S, Sturniolo MT, Dubyak GR, Eckert RL (2005) Human epidermal keratinocytes undergo (−)-epigallocatechin-3-gallate-dependent differentiation but not apoptosis. Carcinogenesis 26:1100–1108

    Article  PubMed  CAS  Google Scholar 

  5. Bayerl C, Taake S, Moll I, Jung EG (1995) Characterization of sunburn cells after exposure to ultraviolet light. Photodermatol Photoimmunol Photomed 11:149–154

    PubMed  CAS  Google Scholar 

  6. Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290

    PubMed  CAS  Google Scholar 

  7. Brodie C, Blumberg PM (2003) Regulation of cell apoptosis by protein kinase c delta. Apoptosis 8:19–27

    Article  PubMed  CAS  Google Scholar 

  8. Chang H, Oehrl W, Elsner P, Thiele JJ (2003) The role of H2O2 as a mediator of UVB-induced apoptosis in keratinocytes. Free Radic Res 37:655–663

    Article  PubMed  CAS  Google Scholar 

  9. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  10. Chaturvedi V, Bodner B, Qin JZ, Nickoloff BJ (2006) Knock down of p53 levels in human keratinocytes increases susceptibility to type I and type II interferon-induced apoptosis mediated by a TRAIL dependent pathway. J Dermatol Sci 41:31–41

    Article  PubMed  CAS  Google Scholar 

  11. Chaturvedi V, Sitailo LA, Bodner B, Denning MF, Nickoloff BJ (2006) Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents. Exp Dermatol 15:14–22

    Article  PubMed  CAS  Google Scholar 

  12. Chaturvedi V, Sitailo LA, Qin JZ, Bodner B, Denning MF, Curry J, Zhang W, Brash D, Nickoloff BJ (2005) Knockdown of p53 levels in human keratinocytes accelerates Mcl-1 and Bcl-x(L) reduction thereby enhancing UV-light induced apoptosis. Oncogene 24:5299–5312

    Article  PubMed  CAS  Google Scholar 

  13. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101:2449–2476

    Article  PubMed  CAS  Google Scholar 

  14. Chouinard N, Valerie K, Rouabhia M, Huot J (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365:133–145

    Article  PubMed  CAS  Google Scholar 

  15. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71:479–500

    Article  PubMed  CAS  Google Scholar 

  16. Cobb MH, Goldsmith EJ (2000) Dimerization in MAP-kinase signaling. Trends Biochem Sci 25:7–9

    Article  PubMed  CAS  Google Scholar 

  17. D’Costa AM, Denning MF (2005) A caspase-resistant mutant of PKC-delta protects keratinocytes from UV-induced apoptosis. Cell Death Differ 12:224–232

    Article  PubMed  CAS  Google Scholar 

  18. Dashti SR, Efimova T, Eckert RL (2001) MEK6 regulates human involucrin gene expression via a p38alpha- and p38delta-dependent mechanism. J Biol Chem 276:27214–27220

    Article  PubMed  CAS  Google Scholar 

  19. Dashti SR, Efimova T, Eckert RL (2001) MEK7-dependent activation of p38 MAP kinase in keratinocytes. J Biol Chem 276:8059–8063

    Article  PubMed  CAS  Google Scholar 

  20. Denning MF (2004) Epidermal keratinocytes: regulation of multiple cell phenotypes by multiple protein kinase C isoforms. Int J Biochem Cell Biol 36:1141–1146

    Article  PubMed  CAS  Google Scholar 

  21. Denning MF, Wang Y, Nickoloff BJ, Wrone-Smith T (1998) Protein kinase Cdelta is activated by caspase-dependent proteolysis during ultraviolet radiation-induced apoptosis of human keratinocytes. J Biol Chem 273:29995–30002

    Article  PubMed  CAS  Google Scholar 

  22. Deucher A, Efimova T, Eckert RL (2002) Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC)alpha and PKCdelta. J Biol Chem 277:17032–17040

    Article  PubMed  CAS  Google Scholar 

  23. Dusek RL, Getsios S, Chen F, Park JK, Amargo EV, Cryns VL, Green KJ (2006) The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J Biol Chem 281:3614–3624

    Article  PubMed  CAS  Google Scholar 

  24. Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    PubMed  CAS  Google Scholar 

  25. Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S (2003) p38 mitogen-activated protein kinases on the body surface—a function for p38delta. J Invest Dermatol 120:823–828

    Article  PubMed  CAS  Google Scholar 

  26. Eckert RL, Efimova T, Dashti SR, Balasubramanian S, Deucher A, Crish JF, Sturniolo M, Bone F (2002) Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase. J Invest Dermatol Symp Proc 7:36–40

    Article  CAS  Google Scholar 

  27. Efimova T, Broome AM, Eckert RL (2003) A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. J Biol Chem 278:34277–34285

    Article  PubMed  CAS  Google Scholar 

  28. Efimova T, Broome AM, Eckert RL (2004) Protein kinase c delta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. Mol Cell Biol 24:8167–8183

    Article  PubMed  CAS  Google Scholar 

  29. Efimova T, Deucher A, Kuroki T, Ohba M, Eckert RL (2002) Novel protein kinase c isoforms regulate human keratinocyte differentiation by activating a p38 delta mitogen-activated protein kinase cascade that targets CCAAT/enhancer-binding protein alpha. J Biol Chem 277:31753–31760

    Article  PubMed  CAS  Google Scholar 

  30. Efimova T, Eckert RL (2000) Regulation of human involucrin promoter activity by novel protein kinase C isoforms. J Biol Chem 275:1601–1607

    Article  PubMed  CAS  Google Scholar 

  31. Efimova T, LaCelle P, Welter JF, Eckert RL (1998) Regulation of human involucrin promoter activity by a protein kinase c, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J Biol Chem 273:24387–24395

    Article  PubMed  CAS  Google Scholar 

  32. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell% 19; 75:817–825

    Google Scholar 

  33. Elegbede JA, Hayes K, Schell K, Oberley TD, Verma AK (2002) Induction of apoptosis and inhibition of papilloma formation may signal a new role for okadaic acid. Life Sci 71:421–436

    Article  PubMed  Google Scholar 

  34. Fischer H, Rossiter H, Ghannadan M, Jaeger K, Barresi C, Declercq W, Tschachler E, Eckhart L (2005) Caspase-14 but not caspase-3 is processed during the development of fetal mouse epidermis. Differentiation 73:406–413

    PubMed  CAS  Google Scholar 

  35. Fischer H, Stichenwirth M, Dockal M, Ghannadan M, Buchberger M, Bach J, Kapetanopoulos A, Declercq W, Tschachler E, Eckhart L (2004) Stratum corneum-derived caspase-14 is catalytically active. FEBS Lett 577:446–450

    Article  PubMed  CAS  Google Scholar 

  36. Fraser A, Evan G (1996) A license to kill. Cell 85:781–784

    Article  PubMed  CAS  Google Scholar 

  37. Fujiki H, Suganuma M (1999) Unique features of the okadaic acid activity class of tumor promoters. J Cancer Res Clin Oncol 125:150–155

    Article  PubMed  CAS  Google Scholar 

  38. Fujiki H, Suganuma M, Yoshizawa S, Kanazawa H, Sugimura T, Manam S, Kahn SM, Jiang W, Hoshina S, Weinstein IB (1989) Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters. Mol Carcinog 2:184–187

    Article  PubMed  CAS  Google Scholar 

  39. Fujiki H, Suganuma M, Yoshizawa S, Nishiwaki S, Winyar B, Sugimura T (1991) Mechanisms of action of okadaic acid class tumor promoters on mouse skin. Environ Health Perspect 93:211–214

    Article  PubMed  CAS  Google Scholar 

  40. Gandarillas A (2000) Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol 35:53–62

    Article  PubMed  CAS  Google Scholar 

  41. Gopalakrishna R, Jaken S (2000) Protein kinase c signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    Article  PubMed  CAS  Google Scholar 

  42. Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin- dependent kinase inhibitors (CKIs). Oncogene 11:211–219

    PubMed  CAS  Google Scholar 

  43. Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis (in process citation). Nat Cell Biol 2:E65–E67

    Article  PubMed  CAS  Google Scholar 

  44. Haystead TA, Sim AT, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337:78–81

    Article  PubMed  CAS  Google Scholar 

  45. Hsu S, Yamamoto T, Borke J, Walsh DS, Singh B, Rao S, Takaaki K, Nah-Do N, Lapp C, Lapp D, Foster E, Bollag WB, Lewis J, Wataha J, Osaki T, Schuster G (2005) Green tea polyphenol-induced epidermal keratinocyte differentiation is associated with coordinated expression of p57/KIP2 and caspase 14. J Pharmacol Exp Ther 312:884–890

    Article  PubMed  CAS  Google Scholar 

  46. Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636

    Article  PubMed  CAS  Google Scholar 

  47. Jost M, Class R, Kari C, Jensen PJ, Rodeck U (1999) A central role of Bcl-X(L) in the regulation of keratinocyte survival by autocrine EGFR ligands. J Invest Dermatol 112:443–449

    Article  PubMed  CAS  Google Scholar 

  48. Kam E, Nirunsuksiri W, Hager B, Fleckman P, Dale BA (1997) Protein phosphatase activity in human keratinocytes cultured from normal epidermis and epidermis from patients with harlequin ichthyosis. Br J Dermatol 137:874–882

    Article  PubMed  CAS  Google Scholar 

  49. Katiyar SK, Afaq F, Azizuddin K, Mukhtar H (2001) Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol 176:110–117

    Article  PubMed  CAS  Google Scholar 

  50. Kim AL, Labasi JM, Zhu Y, Tang X, McClure K, Gabel CA, Athar M, Bickers DR (2005) Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. J Invest Dermatol 124:1318–1325

    Article  PubMed  CAS  Google Scholar 

  51. Kuechle MK, Predd HM, Fleckman P, Dale BA, Presland RB (2001) Caspase-14, a keratinocyte specific caspase: mRNA splice variants and expression pattern in embryonic and adult mouse. Cell Death Differ 8:868–870

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Jenkins CW, Nichols MA, Xiong Y (1994) Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9:2261–2268

    PubMed  CAS  Google Scholar 

  53. Lippens S, Kockx M, Denecker G, Knaapen M, Verheyen A, Christiaen R, Tschachler E, Vandenabeele P, Declercq W (2004) Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin cultures. Am J Pathol 165:833–841

    PubMed  CAS  Google Scholar 

  54. Lippens S, Kockx M, Knaapen M, Mortier L, Polakowska R, Verheyen A, Garmyn M, Zwijsen A, Formstecher P, Huylebroeck D, Vandenabeele P, Declercq W (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7:1218–1224

    Article  PubMed  CAS  Google Scholar 

  55. lombert-Blaise C, Tamiji S, Mortier L, Fauvel H, Tual M, Delaporte E, Piette F, DeLassale EM, Formstecher P, Marchetti P, Polakowska R (2003) Terminal differentiation of human epidermal keratinocytes involves mitochondria- and caspase-dependent cell death pathway. Cell Death Differ 10:850–852

    Article  Google Scholar 

  56. Lu YP, Lou YR, Xie JG, Peng QY, Liao J, Yang CS, Huang MT, Conney AH (2002) Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc Natl Acad Sci USA 99:12455–12460

    Article  PubMed  CAS  Google Scholar 

  57. Matsumura M, Tanaka N, Kuroki T, Ichihashi M, Ohba M (2003) The eta isoform of protein kinase C inhibits UV-induced activation of caspase-3 in normal human keratinocytes. Biochem Biophys Res Commun 303:350–356

    Article  PubMed  CAS  Google Scholar 

  58. Okuyama R, Nguyen BC, Talora C, Ogawa E, Tommasi d V, Lioumi M, Chiorino G, Tagami H, Woo M, Dotto GP (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6:551–562

    Article  PubMed  CAS  Google Scholar 

  59. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13

    Article  PubMed  CAS  Google Scholar 

  60. Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR (1999) UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 112:751–756

    Article  PubMed  CAS  Google Scholar 

  61. Rahman A, Anwar KN, Uddin S, Xu N, Ye RD, Platanias LC, Malik AB (2001) Protein kinase C-delta regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 21:5554–5565

    Article  PubMed  CAS  Google Scholar 

  62. Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    Article  PubMed  CAS  Google Scholar 

  63. Rybin VO, Sabri A, Short J, Braz JC, Molkentin JD, Steinberg SF (2003) Cross-regulation of novel protein kinase C (PKC) isoform function in cardiomyocytes. Role of PKC epsilon in activation loop phosphorylations and PKC delta in hydrophobic motif phosphorylations. J Biol Chem 278:14555–14564

    Article  PubMed  CAS  Google Scholar 

  64. Sassa T, Richter WW, Uda N, Suganuma M, Suguri H, Yoshizawa S, Hirota M, Fujiki H (1989) Apparent “activation” of protein kinases by okadaic acid class tumor promoters. Biochem Biophys Res Commun 159:939–944

    Article  PubMed  CAS  Google Scholar 

  65. Schonthal AH (1995) Regulation of gene expression by serine/threonine protein phosphatases. Semin Cancer Biol 6:239–248

    Article  PubMed  CAS  Google Scholar 

  66. Schonthal AH (1998) Role of PP2A in intracellular signal transduction pathways. Front Biosci 3:D1262–D1273

    PubMed  CAS  Google Scholar 

  67. Shimizu H, Banno Y, Sumi N, Naganawa T, Kitajima Y, Nozawa Y (1999) Activation of p38 mitogen-activated protein kinase and caspases in UVB-induced apoptosis of human keratinocyte HaCaT cells. J Invest Dermatol 112:769–774

    Article  PubMed  CAS  Google Scholar 

  68. Simbulan-Rosenthal CM, Daher A, Trabosh V, Chen WC, Gerstel D, Soeda E, Rosenthal DS (2006) Id3 induces a caspase-3- and -9-dependent apoptosis and mediates UVB sensitization of HPV16 E6/7 immortalized human keratinocytes. Oncogene 25:3649–3660

    Article  PubMed  CAS  Google Scholar 

  69. Sitailo LA, Tibudan SS, Denning MF (2002) Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J BiolChem 277:19346–19352

    CAS  Google Scholar 

  70. Sitailo LA, Tibudan SS, Denning MF (2004) Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain. J Invest Dermatol 123:434–443

    Article  PubMed  CAS  Google Scholar 

  71. Somasundaram K (2000) Tumor suppressor p53: regulation and function (in process citation). Front Biosci 5:D424–D437

    Article  PubMed  CAS  Google Scholar 

  72. Steinberg SF (2004) Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J 384:449–459

    Article  PubMed  CAS  Google Scholar 

  73. Sturniolo MT, Chandraratna RA, Eckert RL (2005) A novel transglutaminase activator forms a complex with type 1 transglutaminase. Oncogene 24:2963–2972

    Article  PubMed  CAS  Google Scholar 

  74. Sturniolo MT, Dashti SR, Deucher A, Rorke EA, Broome AM, Chandraratna RA, Keepers T, Eckert RL (2003) A novel tumor suppressor protein promotes keratinocyte terminal differentiation via activation of type I transglutaminase. J Biol Chem 278:48066–48073

    Article  PubMed  CAS  Google Scholar 

  75. Suganuma M, Fujiki H, Suguri H, Yoshizawa S, Hirota M, Nakayasu M, Ojika M, Wakamatsu K, Yamada K, Sugimura T (1988) Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci USA 85:1768–1771

    Article  PubMed  CAS  Google Scholar 

  76. Welter JF, Crish JF, Agarwal C, Eckert RL (1995) Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem 270:12614–12622

    Article  PubMed  CAS  Google Scholar 

  77. Wheeler DL, Li Y, Verma AK (2004) Protein Kinase C epsilon signals ultraviolet light-induced cutaneous damage and development of squamous cell carcinoma possibly through induction of specific cytokines in a paracrine mechanism. Photochem Photobiol 81:9–18

    Article  Google Scholar 

  78. Wheeler DL, Ness KJ, Oberley TD, Verma AK (2003) Protein kinase Cepsilon is linked to 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-alpha ectodomain shedding and the development of metastatic squamous cell carcinoma in protein kinase Cepsilon transgenic mice. Cancer Res 63:6547–6555

    PubMed  CAS  Google Scholar 

  79. Wheeler DL, Reddig PJ, Dreckschmidt NE, Leitges M, Verma AK (2002) Protein kinase Cdelta-mediated signal to ornithine decarboxylase induction is independent of skin tumor suppression. Oncogene 21:3620–3630

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work utilized the facilities of the Skin Diseases Research Center of Northeast Ohio (NIH, AR39750) and was supported by grants to R. Eckert from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraft, C.A., Efimova, T. & Eckert, R.L. Activation of PKCδ and p38δ MAPK during okadaic acid dependent keratinocyte apoptosis. Arch Dermatol Res 299, 71–83 (2007). https://doi.org/10.1007/s00403-006-0727-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0727-4

Keywords

Navigation