Skip to main content

Advertisement

Log in

Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and possibility classify the potency of an allergen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CV75:

Cell viability 75% concentration

DCs:

Dendritic cells

DMSO:

Dimethyl sulfoxide

DNCB:

2,4-Dinitrochlorobenzene

EC3:

Estimated concentration that yield a three-fold stimulation

FcR:

Fc receptor

GPMT:

Guinea pig maximization test

h-CLAT:

Human Cell Line Activation Test

HPC:

Hematopoietic progenitor cell

HTD:

Highest technical dose

LC:

Langerhans cell

LLNA:

Local lymph node assay

mAb:

Monoclonal antibody

MCI/MI:

Methylchloroisothiazolinone/mthylisothiazolinone

MDBGN:

Methyldibromo gutaronitrile

MFI:

Mean fluorescence intensity

MHC class II:

Class II major histocompatibility complex antigen

MTT:

Methylthiazolydiphenyl-tetrazolium bromide

PBMC:

Peripheral blood mononuclear cell

PI:

Propidium iodide

RFI:

Relative fluorescence intensity

SDS:

Sodium dodecyl sulfate

References

  1. Aiba S, Manome H, Yoshino Y, Tagami H (2000) In vitro treatment of human transforming growth factor-beta1-treated monocyte-derived dendritic cells with haptens can induce the phenotypic and functional changes similar to epidermal Langerhans cells in the initiation phase of allergic contact sensitivity reaction. Immunology 101:68–75

    Article  PubMed  CAS  Google Scholar 

  2. Aiba S, Terunuma A, Manome H, Tagami H (1997) Dendritic cells differently responded to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol 27:3031–3038

    Article  PubMed  CAS  Google Scholar 

  3. Ashikaga T, Hoya M, Itagaki H, Katumura Y, Aiba S (2002) Evaluation of CD86 expression and MHC class II molecule internalization in THP-1 human monocyte cells as predictive endpoints for contact sensitizers. Toxicol in Vitro 16:711–716

    Article  PubMed  CAS  Google Scholar 

  4. Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H (2006) Development of an in vitro skin sensitization test using human cell lines; human cell line activation test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol in Vitro 20:767–773

    CAS  Google Scholar 

  5. Basketer DA, Casati S, Gerberick GF, Griem P, Philips B, Worth A (2005) Skin sensitisation. Altern Lab Anim 33:83–103

    Google Scholar 

  6. Basketter DA, Gerberick GF, Kimber I, Loveless SE (1996) The local lymph node assay: a viable alternative to currently accepted skin sensitization test. Food Chem Toxicol 34:986–997

    Google Scholar 

  7. Basketer DA, Gilmour N, Ryan CA, Gerberick GF, Dearman RJ, Kimber I (2004) Categorisation of human sensitization potency using local lymph node assay EC3 values. Contact Dermatitis 50:206

    Article  Google Scholar 

  8. Becker D, Kolde G, Reske K, Knop J (1994) An in vitro endocytotic activation of murine epidermal Langerhans cells under the influence of contact allergens. J Immunol Methods 169:195–204

    Article  PubMed  CAS  Google Scholar 

  9. Coutant KD, De Fraissinette AB, Cordier A, Ulrich P (1999) Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol Sci 52:189–198

    Article  PubMed  CAS  Google Scholar 

  10. Degwert J, Steckel F, Hoppe U, Kligman LH (1997) In vitro model for contact sensitization: I. stimulatory capacities of human blood-derived dendritic cells and their phenotypical alterations in the presence of contact sensitizers. Toxicol in Vitro 11:613–618

    Article  CAS  PubMed  Google Scholar 

  11. De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, Berneman ZN, Schoeters GE, Weber E, Tuschl H (2002) Phenotypic alterations and IL-1 beta production in CD34(+) progenitor-and monocyte-derived dendritic cells after exposure to allergens: a comparative analysis. Arch Dermatol Res 294:109–116

    Article  PubMed  CAS  Google Scholar 

  12. Gerberick GF, Robinson MK, Ryan CA, Dearman RJ, Kimber I, Basketter DA, Wright Z, Marks JG (2001) Contact allergenic potency: correlation of human and local lymph node assay data. Am J Contact Dermat 12:156–161

    Article  PubMed  CAS  Google Scholar 

  13. Gerberick GF, Ryan CA, Kern PS, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2004) A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. Contact Dermatitis 50:274–288

    Article  PubMed  CAS  Google Scholar 

  14. Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA (2005) Complilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16:157–202

    PubMed  Google Scholar 

  15. Hulette BC, Gilimour N, Ryan CA, Basketter DA, Gerberick GF (2003) Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen. Toxicologist 72:54

    Google Scholar 

  16. Hulette BC, Ryan CA, Gerberick GF (2002) Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment. Toxicol Appl Pharmacol 182:226–233

    Article  PubMed  CAS  Google Scholar 

  17. Kiec-Swierczynska M, Krecisz B, Swierczynska-Machura D (2004) Allergy to cosmetics. II. Preservatives. Med Pr 55:289–292

    Google Scholar 

  18. Kimber I (1996) The skin immune system. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology. Taylor and Francis, New York, pp 133–136

    Google Scholar 

  19. Mizuashi M, Ohtani T, Nakagawa S, Aiba S (2005) Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol 124:579–586

    Article  PubMed  CAS  Google Scholar 

  20. Rougier N, Redziniak G, Mougin D, Schmitt D, Vincent C (2000) In vitro evaluation of the sensitizaiton potential of weak contact allergens using Langerhans-like dendritic cells and autologous T cells. Toxicology 145:73–82

    Article  PubMed  CAS  Google Scholar 

  21. Rousset F, Verda D, Garrigue JL, Mariani M, Leclaire J (2002) In vitro prediction of contact sensitivity with human cell lines. Contact Dermatitis 46(Suppl 4):6

    Google Scholar 

  22. Ryan CA, Gerberick GF, Cruse LW, Basketter DA, Lea L, Blaikie L, Dearman RJ, Warbrick EV, Kimber I (2000) Activity of human contact allergens in the murine local lymph node assay. Contact Dermatitis 43:95–102

    Article  PubMed  CAS  Google Scholar 

  23. Ryan CA, Hulette BC, Gildea LA, Dearman RJ, Kimber I, Gerberick GF (2004) Examination of phenotypic changes in peripheral blood-derived cells following exposure to a contact allergen: cell surface marker and gene expression. J Toxicol Cutaneous Ocul Toxicol 23:91–104

    CAS  Google Scholar 

  24. Sakaguchi H, Ashikaga T, Miyazawa M, Yoshida Y, Ito Y, Yoneyama K, Hirota M, Itagaki H, Toyoda H, Suzuki H (2006) Development of an in vitro skin sensitization test using human cell lines; human cell line activation test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol in Vitro 20:774–784

    Article  PubMed  CAS  Google Scholar 

  25. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  PubMed  CAS  Google Scholar 

  26. Tuschl H, Kovac R (2001) Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol in Vitro 15:327–331

    Article  PubMed  CAS  Google Scholar 

  27. Van Ginkel CJ, Rundervoort GJ (1995) Increasing incidence of contact allergy to the new preservative 1,2-dibromo-2,4-dicyanobutane (methyldibromoglutaronitrile). Br J Dermatol 132:918–920

    Article  PubMed  Google Scholar 

  28. Wilkinson JD, Shaw S, Andersen KE, Brandao FM, Bruynzeel DP, Bruze M, Camarasa JM, Diepgen TL, Ducombs G, Frosch PJ, Goossens A, Lachappelle JM, Lahti A, Menne T, Seidenari S, Tosti A, Wahlberg JE (2002) Monitoring levels of preservative sensitivity in Europe. A 10-year overview (1991-2000). Contact Dermatitis 46:207–210

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki H (2003) Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naïve THP-1 cell line. Toxicol in Vitro 17:221–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Javier Avalos for his critical review of the manuscript and Ms. Satomi Sudo for her excellent technical help and accurate data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Sakaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaguchi, H., Miyazawa, M., Yoshida, Y. et al. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1. Arch Dermatol Res 298, 427–437 (2007). https://doi.org/10.1007/s00403-006-0714-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0714-9

Keywords

Navigation