Skip to main content

Advertisement

Log in

ATX-S10(Na)-PDT shows more potent effect on collagen metabolism of human normal and scleroderma dermal fibroblasts than ALA-PDT

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Recent study revealed that photodynamic therapy (PDT) with a novel photosensitizer (ATX-S10(Na)) shows more potent effects for various skin diseases than ALA-PDT. The effect of ATX-S10(Na)-PDT on dermal fibroblasts is still unknown. Using dermal fibroblasts derived from normal and scleroderma patients, and mouse skin in vivo, we compared the effects of ATX-S10(Na)-PDT and ALA-PDT. Fibroblasts from normal, scleroderma patients or mice skin were treated with ATX-S10(Na)-PDT or ALA-PDT. After the PDT treatments, the expression of matrix metalloproteinases (MMPs) Tissue inhibitors of metalloproteinases (TIMPs) and collagen synthesis was assayed using ELISA and reverse transcription-PCR (RT-PCR). The expression of MMP-1 and MMP-3 was slightly decreased and collagen I mRNA was significantly increased in scleroderma fibroblasts compared with normal fibroblasts. Both ATX-S10(Na)-PDT and ALA-PDT increased the expression of MMP-1 and MMP-3 in protein and mRNA levels in both normal and scleroderma fibroblasts with more potent effect by ATX-S10(N)-PDT. Collagen I synthesis was markedly decreased by ATX-S10(Na)-PDT and by ALA-PDT again with more potent effect by ATX-S10(Na)-PDT in both normal and scleroderma fibroblasts. In mice skin the effect of PDT for MMPs and collagen I was also detected and the effect was more potent in ATX-S10(Na)-PDT. In contrast, MMP-2, TIMP-1, TIMP-2, and collagen III expression was not affected by the ATX-S10(Na)-PDT or ALA-PDT treatment. ATX-S10(Na)-PDT is more potent modulator for dermal matrix components than ALA-PDT and might be useful for scleroderma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-ALA:

5-Aminolevulinic acid

MMP:

Matrix metalloproteinase

PDT:

Photodynamic therapy

RT-PCR:

Reverse transcription-PCR

TIMP:

Tissue inhibitors of metalloproteinase

References

  1. Berg K (1996) Mechanism of cell damage in photodynamic therapy. In: Honigsmann H, Jori G, Young AR (eds) The fundamental bases of phototherapy. OEMF Spa, Milano, pp 181–207

    Google Scholar 

  2. Brenneisen P, Wenk J, Klotz O, Wlaschek M, Brivibal K, Krieg T, Sies H, Scharffetter-Kochanek K (1998) Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling leading to increased interstitial collagenase (matrix-degrading metalloproteinase (MMP)-1 and stromelysis-1(MMP-3) mRNA levels in cultured human dermal fibroblasts. J Biol Chem 273:5279–5287

    Article  PubMed  CAS  Google Scholar 

  3. Fritsch C, Goerz G, Ruzicka T (1998) Photodynamic therapy in dermatology. Arch Dermatol 134:207–214

    Article  PubMed  CAS  Google Scholar 

  4. Hawk A, English FC (1997) Localized and systemic scleroderma. Semin Cutan Med Surg 20:27–37

    Google Scholar 

  5. Herrmann G, Wlaschek M, Lange TS, Prenzel K, Goerz G, Scharffetter-Kochanek K (1993) UVA irradiation stimulates the synthesis of various matrix-metalloproteinases (MMP) in cultured human fibroblasts. Exp Dermatol 2:92–97

    Article  PubMed  CAS  Google Scholar 

  6. Karrer S, Abels C, Landthaler M, Szeimier RM (2000) Topical photodynamic therapy for localized scleroderma. Acta Derm Venereol (Stockh) 80:26–27

    Article  CAS  Google Scholar 

  7. Karrer S, Bosserhoff AK, Weiderer P, Landthaler M, Szeimier RM (2003) Influence of 5-aminolevulinic acid and red light on collagen metabolism of human dermal fibroblasts. J Invest Dermatol 120:325–331

    Article  PubMed  CAS  Google Scholar 

  8. Karrer S, Bosserhoff AK, Weidere P, Landthaler M, Szeimirs RM (2004) Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of metalloproteinases in fibroblasts. Br J Dermatol 151:776–783

    Article  PubMed  CAS  Google Scholar 

  9. Kennedy JP, Pottier RH, Pross DC (1990) Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 6:143–148

    Article  PubMed  CAS  Google Scholar 

  10. Kuhari VM, Sandberg M, Kalimo H, Vuorio T, Vuorio E (1988) Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization. J Invest Dermatol 90:664–670

    Article  Google Scholar 

  11. Kurwa HA, Barlow RJ (1999) The role of photodynamic therapy in dermatology. Clin Exp Dermatol 24:143–148

    Article  PubMed  CAS  Google Scholar 

  12. Maniatis T, Fritsch EH, Sambrook T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  13. Morison WL (1997) Psoralen UVA therapy for linear and generalized morphea. J Am Acad Dermatol 37:675–679

    Article  Google Scholar 

  14. Morton CA, Brown SB, Collins S, Ibbotson S, Jenkinson H, Kurwa H, Langmack K, McKenna K, Moseley H, Pearse AD, Stringer M, Taylor DK, Wong G, Rhodes LE (2002) Guideline of topical photodynamic therapy: report of a workshop of the British photodermatology group. Br J Dermatol 146:552–567

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima S, Sakata I, Takemura T (1992) Tumor localizing and photosensitization of photo-chlorin ATX-S10(Na). In: Spinelli P, dal Fante M, Marchesini R (eds) Photodynamic therapy and biological lasers. Elsevier, Amsterdam, pp 531–534

    Google Scholar 

  16. Nakajima S, Sakata I, Hirano T, Takeyama T (1998) Therapeutic effect of interstitial photodynamic therapy using ATX-S10(Na) and a diode laser on radio-resistant SCC II tumors of C3H/He mice. Anticancer Drugs 9:539–543

    PubMed  CAS  Google Scholar 

  17. Ormrod D, Javis B (2000) Topical aminolevulinic acid HCl photodynamic therapy. Am J Dermatol 1:552–557

    Google Scholar 

  18. Petersen MJ, Hansen C, Craig S (1992) Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts. J Invest Dermatol 99:440–444

    Article  PubMed  CAS  Google Scholar 

  19. Petersen MJ, Hansen C, Craig S (1993) Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts. J Invest Dermatol 99:440–444

    Article  Google Scholar 

  20. Raza SL, Cornelius LA (2000) Matrix metalloproteinases: pro- and anti-angiogenic activities. J Invest Dermatol Symp Proc 5:47–54

    Article  CAS  Google Scholar 

  21. Tajiri H, Yokoyama K, Boku N, Ohtsu A, Fujii T, Yoshida S, Sato T, Hakamata K, Hayashi K, Sakata I (1997) Fluorescent diagnosis of experimental gastric cancer using a tumor-localizing photosensitizer. Cancer Lett 111:215–220

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi H, Kinouchi M, Tamura T, Iizuka H (1996) Decreased β2-adrenergic receptor-mRNA and loricrin-mRNA, and increased involucrin-mRNA transcripts in psoriatic epidermis: analysis by reverse transcription-polymerase chain reaction. Br J Dermatol 134:1065–1069

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi H, Manabe A, Ishida-Yamamoto A, Hashimoto Y, Iizuka H (2002) Aberrant expression of apoptosis-related molecules in psoriatic epidermis. J Dermatol Sci 28:187–197

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi H, Itoh Y, Nakajima S, Sakata I, Iizuka H (2004) ATX-S10(Na) photodynamic therapy for human skin tumors and benign hyperproliferative skin. Photodermatol Photoimmunol Photomed 20:257–265

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi H, Nakajima S, Sakata I, Ishida-Yamamoto A, Iizuka H (2005) Photodynamic therapy using a novel photosesitizer, ATX-S10(Na): comparative effect with 5-aminolevulinic acid on squamous cell carcinoma cell line, SSC15, ultraviolet B-induced skin tumors, and phorbol ester-induced hyperproliferative skin. Arch Dermato Res 296:496–502

    Article  CAS  Google Scholar 

  26. Takahashi H, Nakajima S, Sakata I, Ishida-Yamamoto A, Iizuka H (2005) ATX-S10(Na)-photodynamic therapy is less carcinogenic for mouse skin compared with ultraviolet B irradiation. Br J Dermatol 153:1182–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Komatsu, S., Ibe, M. et al. ATX-S10(Na)-PDT shows more potent effect on collagen metabolism of human normal and scleroderma dermal fibroblasts than ALA-PDT. Arch Dermatol Res 298, 257–263 (2006). https://doi.org/10.1007/s00403-006-0689-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0689-6

Keywords

Navigation