Skip to main content

Advertisement

Log in

In vitro reproduction of clinical hallmarks of eczematous dermatitis in organotypic skin models

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Dermatitis is a group of highly pruritic chronic inflammatory skin diseases which represents a major public-health problem worldwide. The prevalence of dermatitis has increased in recent years affecting up to 20% of the general population. Acute skin lesions are characterized by extensive degrees of intercellular edema of the epidermis (spongiosis) and a marked perivenular inflammatory cell infiltrate in the dermis. Keratinocytes within eczematous lesions exhibit a modified expression of proinflammatory cytokines, chemokines and cell-surface molecules. The pathophysiological puzzle of dermatitis is far from being elucidated completely, but skin infiltration of activated memory/effector T cells are thought to play the pivotal role in the pathogeneses. The aim of this study was the set-up of organotypic models mimicking the symptoms of eczematous dermatitis to provide a tool for therapeutic research in vitro. Therefore activated T cells (ATs) were integrated in organotypic skin and epidermis equivalents (SE, EE). These models enabled the reproduction of several clinical hallmarks of eczematous dermatitis: (1) T cells induce keratinocyte apoptosis, which leads to a reduced expression of the adhesion molecule E-cadherin (E-cad) and disruption of the epidermal barrier. (2) Expression of intercellular adhesion molecule-1 (ICAM-1) allows the attachment of leukocytes to epidermal cells. (3) Upregulation of neurotrophin-4 (NT-4) in the epidermis is thought to mediate pruritus in lesions by supporting nerve outgrowth. (4) Elevated levels of pro-inflammatory cytokines (IL-1α and IL-6) and chemokines (IL-8, IP-10, TARC, MCP-1, RANTES and eotaxin) amplify the inflammatory response and lead to an influx of secondary immunocells into the skin. The therapeutics dexamethasone and FK506 markedly reduce cytokines/chemokines production and epidermal damaging in these models. These data underline that activated memory/effector T cells induce eczematous changes in this HaCaT cell based organotypic skin equivalent. Furthermore it can be concluded that these models make it possible to investigate targets of therapeutics in skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Anttila HS, Reitamo S, Erkko P, Ceska M, Moser B, Baggiolini M (1992) Interleukin-8 immunoreactivity in the skin of healthy subjects and patients with palmoplantar pustulosis and psoriasis. J Invest Dermatol 98:96–101

    Article  PubMed  CAS  Google Scholar 

  2. Barker JN, Mitra RS, Griffiths CE, Dixit VM, Nickoloff BJ (1991) Keratinocytes as initiators of inflammation. Lancet 337:211–214

    Article  PubMed  CAS  Google Scholar 

  3. Baus E, Andris F, Dubois PM, Urbain J, Leo O (1996) Dexamethasone inhibits the early steps of antigen receptor signaling in activated T lymphocytes. J Immunol 156:4555–4561

    PubMed  CAS  Google Scholar 

  4. Bekersky I, Fitzsimmons W, Tanase A, Maher RM, Hodosh E, Lawrence I (2001) Nonclinical and early clinical development of tacrolimus ointment for the treatment of atopic dermatitis. J Am Acad Dermatol 44:S17–S27

    Article  PubMed  CAS  Google Scholar 

  5. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  6. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, Renz H (1999) Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol 103:119–124

    Article  PubMed  CAS  Google Scholar 

  7. Dustin ML, Singer KH, Tuck DT, Springer TA (1988) Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J Exp Med 167:1323–1340

    Article  PubMed  CAS  Google Scholar 

  8. Gavrieli Y, Sherman Y, Ben Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  9. Grabbe S, Schwarz T (1998) Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19:37–44

    Article  PubMed  CAS  Google Scholar 

  10. Grewe M, Bruijnzeel-Koomen CA, Schopf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, Krutmann J (1998) A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19:359–361

    Article  PubMed  CAS  Google Scholar 

  11. Grewe M, Gyufko K, Schopf E, Krutmann J (1994) Lesional expression of interferon-gamma in atopic eczema. Lancet 343:25–26

    Article  PubMed  CAS  Google Scholar 

  12. Grewe M, Vogelsang K, Ruzicka T, Stege H, Krutmann J (2000) Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Invest Dermatol 114:1108–1112

    Article  PubMed  CAS  Google Scholar 

  13. Griffiths CE, Voorhees JJ, Nickoloff BJ (1989) Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor. J Am Acad Dermatol 20:617–629

    PubMed  CAS  Google Scholar 

  14. Hanifin JM, Tofte SJ (1999) Update on therapy of atopic dermatitis. J Allergy Clin Immunol 104:S123-S125

    Article  PubMed  CAS  Google Scholar 

  15. Herz U, Bunikowski R, Renz H (1998) Role of T cells in atopic dermatitis. New aspects on the dynamics of cytokine production and the contribution of bacterial superantigens. Int Arch Allergy Immunol 115:179–190

    Article  PubMed  CAS  Google Scholar 

  16. Ibanez CF, Ernfors P, Timmusk T, Ip NY, Arenas E, Yancopoulos GD, Persson H (1993) Neurotrophin-4 is a target-derived neurotrophic factor for neurons of the trigeminal ganglion. Development 117:1345–1353

    PubMed  CAS  Google Scholar 

  17. Kay JE, Benzie CR, Goodier MR, Wick CJ, Doe SE (1989) Inhibition of T-lymphocyte activation by the immunosuppressive drug FK-506. Immunology 67:473–477

    PubMed  CAS  Google Scholar 

  18. Kim DS, Kim HJ, Choi KH, Chung JH, Kim KH, Par KC (2001) UVB-induced GM-CSF production is suppressed by dexamethasone in HaCaT cells. Photodermatol Photoimmunol Photomed 17:121–125

    Article  PubMed  CAS  Google Scholar 

  19. Klunker S, Trautmann A, Akdis M, Verhagen J, Schmid-Grendelmeier P, Blaser K, Akdis CA (2003) A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-gamma-inducible protein 10, monokine induced by IFN-gamma, and IFN-gamma-inducible alpha-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J Immunol 171:1078–1084

    PubMed  CAS  Google Scholar 

  20. Krueger JG, Krane JF, Carter DM, Gottlieb AB (1990) Role of growth factors, cytokines, and their receptors in the pathogenesis of psoriasis. J Invest Dermatol 94:135S–140S

    Article  PubMed  CAS  Google Scholar 

  21. Lange K, Kleuser B, Gysler A, Bader M, Maia C, Scheidereit C, Korting HC, Schafer-Korting M (2000) Cutaneous inflammation and proliferation in vitro: differential effects and mode of action of topical glucocorticoids. Skin Pharmacol Appl Skin Physiol 13:93–103

    Article  PubMed  CAS  Google Scholar 

  22. Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464–1466

    Article  PubMed  CAS  Google Scholar 

  23. Laughter D, Istvan JA, Tofte SJ, Hanifin JM (2000) The prevalence of atopic dermatitis in Oregon schoolchildren. J Am Acad Dermatol 43:649–655

    Article  PubMed  CAS  Google Scholar 

  24. Leung DY (2000) Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 105:860–876

    Article  PubMed  CAS  Google Scholar 

  25. Lever R, MacDonald C, Waugh P, Aitchison T (1998) Randomised controlled trial of advice on an egg exclusion diet in young children with atopic eczema and sensitivity to eggs. Pediatr Allergy Immunol 9:13–19

    Article  PubMed  CAS  Google Scholar 

  26. Levin C, Maibach HI (2000) An overview of the efficacy of topical corticosteroids in experimental human nickel contact dermatitis. Contact Dermatitis 43:317–321

    Article  PubMed  CAS  Google Scholar 

  27. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD (1997) Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest 99:1767–1773

    PubMed  CAS  Google Scholar 

  28. Meyle J, Gultig K, Rascher G, Wolburg H (1999) Transepithelial electrical resistance and tight junctions of human gingival keratinocytes. J Periodontal Res 34:214–222

    Article  PubMed  CAS  Google Scholar 

  29. Michel G, Auer H, Kemeny L, Bocking A, Ruzicka T (1996) Antioncogene P53 and mitogenic cytokine interleukin-8 aberrantly expressed in psoriatic skin are inversely regulated by the antipsoriatic drug tacrolimus (FK506). Biochem Pharmacol 51:1315–1320

    Article  PubMed  CAS  Google Scholar 

  30. Mochizuki M, Bartels J, Mallet AI, Christophers E, Schröder JM (1998) IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J Immunol 160:60–68

    PubMed  CAS  Google Scholar 

  31. Mukaida N, Gussella GL, Kasahara T, Ko Y, Zachariae CO, Kawai T, Matsushima K (1992) Molecular analysis of the inhibition of interleukin-8 production by dexamethasone in a human fibrosarcoma cell line. Immunology 75:674–679

    PubMed  CAS  Google Scholar 

  32. Nakagawa H, Etoh T, Ishibashi Y, Higaki Y, Kawashima M, Torii H, Harada S (1994) Tacrolimus ointment for atopic dermatitis. Lancet 344:883

    Article  PubMed  CAS  Google Scholar 

  33. Nickoloff BJ, Griffiths CE, Barker JN (1990) The role of adhesion molecules, chemotactic factors, and cytokines in inflammatory and neoplastic skin disease—1990 update. J Invest Dermatol 94:151S–157S

    Article  PubMed  CAS  Google Scholar 

  34. Ollmar S, Eek A, Sundstrom F, Emtestam L (1995) Electrical impedance for estimation of irritation in oral mucosa and skin. Med Prog Technol 21:29–37

    PubMed  CAS  Google Scholar 

  35. Riddle DR, Lo DC, Katz LC (1995) NT-4-mediated rescue of lateral geniculate neurons from effects of monocular deprivation. Nature 378:189–191

    Article  PubMed  CAS  Google Scholar 

  36. Rowland Payne CM, Wilkinson JD, McKee PH, Jurecka W, Black MM (1985) Nodular prurigo—a clinicopathological study of 46 patients. Br J Dermatol 113:431–439

    Article  PubMed  CAS  Google Scholar 

  37. Santamaria Babi LF, Picker LJ, Perez Soler MT, Drzimalla K, Flohr P, Blaser K, Hauser C (1995) Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J Exp Med 181:1935–1940

    Article  PubMed  CAS  Google Scholar 

  38. Scalabrin DM, Bavbek S, Perzanowski MS, Wilson BB, Platts-Mills TA, Wheatley LM (1999) Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol 104:1273–1279

    Article  PubMed  CAS  Google Scholar 

  39. Schröder JM, Noso N, Sticherling M, Christophers E (1996) Role of eosinophil-chemotactic C-C chemokines in cutaneous inflammation. J Leukoc Biol 59:1–5

    PubMed  Google Scholar 

  40. Slavin J, Unemori E, Hunt TK, Amento E (1995) Monocyte chemotactic protein-1 (MCP-1) mRNA is down-regulated in human dermal fibroblasts by dexamethasone: differential regulation by TGF-beta. Growth Factors 12:151–157

    Article  PubMed  CAS  Google Scholar 

  41. Springer M, Engelhart K, Biesalski HK (2003) Effects of 3-isobutyl-1-methylxanthine and kojic acid on cocultures and skin equivalents composed of HaCaT cells and human melanocytes. Arch Dermatol Res 295:88–91

    Article  PubMed  CAS  Google Scholar 

  42. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, Noll M, Brocker EB, Blaser K, Akdis CA (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35

    PubMed  CAS  Google Scholar 

  43. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K, Akdis CA (2001a) Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 108:839–846

    Article  PubMed  CAS  Google Scholar 

  44. Trautmann A, Altznauer F, Akdis M, Simon HU, Disch R, Brocker EB, Blaser K, Akdis CA (2001b) The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J Invest Dermatol 117:927–934

    Article  PubMed  CAS  Google Scholar 

  45. Tuschil A, Lam C, Haslberger A, Lindley I (1992) Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J Invest Dermatol 99:294–298

    Article  PubMed  CAS  Google Scholar 

  46. Van Snick J (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278

    Article  PubMed  CAS  Google Scholar 

  47. Vestergaard C, Bang K, Gesser B, Yoneyama H, Matsushima K, Larsen CG (2000) A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J Invest Dermatol 115:640–646

    Article  PubMed  CAS  Google Scholar 

  48. Villagomez MT, Bae SJ, Ogawa I, Takenaka M, Katayama I (2004) Tumour necrosis factor-alpha but not interferon-gamma is the main inducer of inducible protein-10 in skin fibroblasts from patients with atopic dermatitis. Br J Dermatol 150:910–916

    Article  PubMed  CAS  Google Scholar 

  49. Wakugawa M, Nakamura K, Akatsuka M, Nakagawa H, Tamaki K (2001) Interferon-gamma-induced RANTES production by human keratinocytes is enhanced by IL-1beta, TNF-alpha, IL-4 and IL-13 and is inhibited by dexamethasone and tacrolimus. Dermatology 202:239–245

    Article  PubMed  CAS  Google Scholar 

  50. Wen LP, Madani K, Fahrni JA, Duncan SR, Rosen GD (1997) Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-gamma and Fas. Am J Physiol 273:L921-L929

    PubMed  CAS  Google Scholar 

  51. White MV, Yoshimura T, Hook W, Kaliner MA, Leonard EJ (1989) Neutrophil attractant/activation protein-1 (NAP-1) causes human basophil histamine release. Immunol Lett 22:151–154

    Article  PubMed  CAS  Google Scholar 

  52. Yang Y, Mercep M, Ware CF, Ashwell JD (1995) Fas and activation-induced Fas ligand mediate apoptosis of T cell hybridomas: inhibition of Fas ligand expression by retinoic acid and glucocorticoids. J Exp Med 181:1673–1682

    Article  PubMed  CAS  Google Scholar 

  53. Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ (1987) Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84:9233–9237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Engelhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhart, K., El Hindi, T., Biesalski, HK. et al. In vitro reproduction of clinical hallmarks of eczematous dermatitis in organotypic skin models. Arch Dermatol Res 297, 1–9 (2005). https://doi.org/10.1007/s00403-005-0575-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-005-0575-7

Keywords

Navigation