Skip to main content
Log in

Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Caspases, members of the cysteine protease family, execute UVB-induced apoptosis in several cell lines and keratinocytes. Several researchers investigating UVB-induced apoptosis have demonstrated a dose-dependent protective effect of the synthetic peptide caspase inhibitor zVAD-fmk. However, zVAD-fmk displays a dose-dependent protective effect against UVB-induced apoptosis, even at doses higher than those required to block all known proapoptotic caspases. In addition, it is known that zVAD-fmk also inhibits other cysteine proteases including cathepsins and calpains, and these proteases have recently been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-α. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes. This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 μM and above zVAD-fmk conferred partial dose-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 μM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors zFA-fmk, CA-074-Me and ALLN all failed to prevent UVB-induced apoptosis in HeLa cells and keratinocytes. In conclusion, the protective effect of zVAD-fmk at high concentrations indicates that other proteases than caspases are active in the execution of UVB-induced apoptosis but further studies are needed to identify these proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2 A
Fig. 3A, B
Fig. 4A–F

Similar content being viewed by others

References

  1. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18

    Article  PubMed  CAS  Google Scholar 

  2. Franklin WA, Lo KM, Haseltine WA (1982) Alkaline lability of fluorescent photoproducts produced in ultraviolet light-irradiated DNA. J Biol Chem 257:13535–13543

    PubMed  CAS  Google Scholar 

  3. Tornaletti S, Rozek D, Pfeifer GP (1993) The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 8:2051–2057

    PubMed  CAS  ISI  Google Scholar 

  4. Kim MY, Park HJ, Baek SC, Byun DG, Houh D (2002) Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias. J Dermatol Sci 29:1–9

    Article  PubMed  Google Scholar 

  5. Muramatsu T, Kobayashi N, Tada H, Yamaji M, Shirai T, Mori T, Ohnishi T (1992) Induction and repair of UVB-induced cyclobutane pyrimidine dimers and (6–4) photoproducts in organ-cultured normal human skin. Arch Dermatol Res 284:232–237

    Article  PubMed  CAS  Google Scholar 

  6. Dunkern TR, Fritz G, Kaina B (2001) Ultraviolet light-induced DNA damage triggers apoptosis in nucleotide excision repair-deficient cells via Bcl-2 decline and caspase-3/-8 activation. Oncogene 20:6026–6038

    Article  PubMed  CAS  ISI  Google Scholar 

  7. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776

    Article  PubMed  CAS  ISI  Google Scholar 

  8. Brash DE (1996) Cellular proofreading. Nat Med 2:525–526

    Article  PubMed  CAS  Google Scholar 

  9. Kulms D, Zeise E, Poppelmann B, Schwarz T (2002) DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene 21:5844–5851

    Article  PubMed  CAS  ISI  Google Scholar 

  10. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  ISI  Google Scholar 

  11. Paroni G, Henderson C, Schneider C, Brancolini C (2001) Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276:21907–21915

    Article  PubMed  CAS  Google Scholar 

  12. Assefa Z, Vantieghem A, Garmyn M, Declercq W, Vandenabeele P, Vandenheede JR, Bouillon R, Merlevede W, Agostinis P (2000) p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J Biol Chem 275:21416–21421

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613

    Article  PubMed  CAS  Google Scholar 

  14. Bossy-Wetzel E, Newmeyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    Article  PubMed  CAS  ISI  Google Scholar 

  15. Aragane Y, Kulms D, Metze D, Wilkes G, Poppelmann B, Luger TA, Schwarz T (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182

    Article  PubMed  CAS  Google Scholar 

  16. Kulms D, Poppelmann B, Yarosh D, Luger TA, Krutmann J, Schwarz T (1999) Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc Natl Acad Sci U S A 96:7974–7979

    Article  PubMed  CAS  Google Scholar 

  17. Saegusa J, Kawano S, Koshiba M, Hayashi N, Kosaka H, Funasaka Y, Kumagai S (2002) Oxidative stress mediates cell surface expression of SS-A/Ro antigen on keratinocytes. Free Radic Biol Med 32:1006–1016

    Article  PubMed  CAS  Google Scholar 

  18. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jaattela M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010

    Article  PubMed  CAS  Google Scholar 

  19. Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES, Litwack G, Khanna K, Lavin MF, Watters DJ (1998) Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5:1051–1061

    Article  PubMed  CAS  Google Scholar 

  20. Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R (1999) Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442:117–121

    Article  PubMed  CAS  ISI  Google Scholar 

  21. Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J (1998) Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438:150–158

    Article  PubMed  CAS  ISI  Google Scholar 

  22. Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Stefe I, Vandenabeele P, Bromme D, Puizdar V, Fonovic M, Trstenjak-Prebanda M, Dolenc I, Turk V, Turk B (2003) Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10:881–888

    PubMed  CAS  Google Scholar 

  23. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111

    PubMed  CAS  Google Scholar 

  24. Knepper-Nicolai B, Savill J, Brown SB (1998) Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 273:30530–30536

    Article  PubMed  CAS  Google Scholar 

  25. Wissing D, Mouritzen H, Egeblad M, Poirier GG, Jaattela M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci U S A 94:5073–5077

    Article  PubMed  CAS  Google Scholar 

  26. Adam-Klages S, Schwandner R, Luschen S, Ussat S, Kreder D, Kronke M (1998) Caspase-mediated inhibition of human cytosolic phospholipase A2 during apoptosis. J Immunol 161:5687–5694

    PubMed  CAS  Google Scholar 

  27. McCollum AT, Nasr P, Estus S (2002) Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J Neurochem 82:1208–1220

    Article  PubMed  CAS  Google Scholar 

  28. Miyachi Y, Yoshimura N, Suzuki S, Hamakubo T, Kannagi R, Imamura S, Murachi T (1986) Biochemical demonstration and immunohistochemical localization of calpain in human skin. J Invest Dermatol 86:346–349

    PubMed  CAS  Google Scholar 

  29. Hiwasa T, Arase Y, Kikuno K, Hasegawa R, Sugaya S, Kita K, Saido T, Yamamori H, Maki M, Suzuki N (2000) Increase in ultraviolet sensitivity by overexpression of calpastatin in ultraviolet-resistant UVr-1 cells derived from ultraviolet-sensitive human RSa cells. Cell Death Differ 7:531–537

    Article  PubMed  CAS  Google Scholar 

  30. Biggs JR, Yang J, Gullberg U, Muchardt C, Yaniv M, Kraft AS (2001) The human brm protein is cleaved during apoptosis: the role of cathepsin G. Proc Natl Acad Sci U S A 98:3814–3819

    Article  PubMed  CAS  Google Scholar 

  31. Cavarra E, Fimiani M, Lungarella G, Andreassi L, De SM, Mazzatenta C, Ciccoli L (2002) UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: a possible contribution to the remodeling of elastotic areas in sun-damaged skin. Biol Chem 383:199–206

    Article  PubMed  CAS  Google Scholar 

  32. Welss T, Sun J, Irving JA, Blum R, Smith AI, Whisstock JC, Pike RN, Von Mikecz A, Ruzicka T, Bird PI, Abts FH (2003) Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry 42:7381–7389

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Acknowledgements

We are grateful to Birgit Poulsen for excellent technical assistance. The study was supported by the Copenhagen Council, Aage Bang’s Foundation, the Danish Hospital Foundation for Medical Research. Region of Copenhagen, The Faroe Islands and Greenland, and the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Bang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, B., Baadsgaard, O., Skov, L. et al. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells. Arch Dermatol Res 296, 67–73 (2004). https://doi.org/10.1007/s00403-004-0473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-004-0473-4

Keywords

Navigation