Skip to main content

Advertisement

Log in

Structure-activity relationships of three differently substituted 2,7,12,17-tetrakis-(β-methoxyethyl) porphycene derivatives in vitro

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The subcellular localization, efficacy and photooxidative mechanism of three new photosensitizing porphycenes (HexoTMPn, PeloTMPn, CpoTMPn) for photodynamic therapy with different substituents at position 9 of the tetrapyrrole macrocycle were investigated in vitro using different human skin-derived cell lines (HaCaT, SCL I, SCL II) with the aim of customizing the side-chain chemistry to accelerate cellular uptake and so enhance photodynamic activity. Cells were incubated with a porphycene and costained with organelle-specific markers. Subcellular localization was determined by fluorescence microscopy. Also, cells were incubated with different sensitizer concentrations (0–1000 nmol/l) and irradiated by an incoherent light source (λem = 600–750 nm, 40 mW/cm2, 24 J/cm2) with/without quenchers or enhancers (NaN3, histidine, mannitol or D2O). Cell viability was assessed. All porphycenes were localized in perinuclear lysosomes and induced a decrease in mitochondrial activity following irradiation. HexoTMPn was the most efficient in all three cell lines (EC50 in HaCaT cells: HexoTMPn 14 nmol/l, CpoTMPn 62 nmol/l, PeloTMPn 89 nmol/l). Addition of either NaN3 or histidine reduced the phototoxicity significantly. Due to the short lifetime of singlet oxygen, the sites of sensitizer localization are the initial subcellular targets. The cytotoxicity of each sensitizer varied depending on singlet oxygen quantum yield and cell line. Despite the different chemical structures, the biological effects were not very distinct, since they seemed to be mostly determined by the tetrapyrrole ring and only slightly modified by the substituent at position 9. Also, there was only a narrow margin between biological compatibility and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–F
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abels C, Szeimies RM, Steinbach P, Richert C, Goetz AE (1997) Targeting of the tumor microcirculation by photodynamic therapy with a synthetic porphycene. J Photochem Photobiol 40:305–312

    Article  CAS  Google Scholar 

  • Aramedia PF, Redmond RW, Nonell S, Schuster W, Braslavsky SE, Schaffner K, Vogel E (1986) The photophysical properties of porphycenes: potential photodynamic therapy agents. Photochem Photobiol 44:555–559

    PubMed  Google Scholar 

  • Aveline BM (2001) Primary processes in photosensitization mechanisms. In: Calzavara-Pinton P, Szeimies RM, Ortel B (eds) Photodynamic therapy and fluorescence diagnosis in dermatology. Elsevier Science, Amsterdam, pp 17–37

  • Baker A, Kanovsky JR (1993) Time-resolved studies of singlet-oxygen emission from L1210 leukemia cells labeled with 5-(N-hexadecanoyl)amino eosin. A comparison with a one-dimensional model of singlet-oxygen diffusion and quenching. Photochem Photobiol 57:720–727

    CAS  PubMed  Google Scholar 

  • Bakri SJ, Kaiser PK (2004) Verteporfin ocular photodynamic therapy. Expert Opin Pharmacother 5:195–203

    Article  CAS  PubMed  Google Scholar 

  • Bellnier DA, Ho YK, Pandey RK, Missert JR, Dougherty TJ (1989) Distribution and elimination of photofrin II in mice. Photochem Photobiol 50:221–228

    CAS  PubMed  Google Scholar 

  • Boukamp P, Tilgen W, Dzarlieva RT, Breitkreuz D, Haag D, Riehl RK, Bohnert A, Fusenig NE (1982) Phenotypic and genotypic characteristics of a cell line from a squamous cell carcinoma of the human skin. J Natl Cancer Inst 68:415–427

    CAS  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte. J Cell Biol 106:761–771

    CAS  PubMed  Google Scholar 

  • Braslavsky SE, Müller M, Martire DO, Pörting S, Bertolotti S, Charkravorti S, Koc-Weier G, Knipp B, Schaffner K (1997) Photophysical properties of porphycene derivatives (18 π porphinoids). J Photochem Photobiol 40:191–198

    Article  CAS  Google Scholar 

  • Dellian M, Abels C, Kuhnle GEH, Goetz AE (1995) Effects of photodynamic therapy on leucocyte-endothelium interaction: differences between normal and tumor tissue. Br J Cancer 72:1125–1130

    CAS  PubMed  Google Scholar 

  • Dixit R, Mukhtar H, Bickers DR (1983) Studies on the role of reactive oxygen species in mediating lipid peroxide formation in epidermal microsomes of rat skin. J Invest Dermatol 81:369–375

    CAS  PubMed  Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  CAS  PubMed  Google Scholar 

  • Dougherty TJ (1986) Photosensitization of malignant tumors. Semin Surg Oncol 2:24–27

    CAS  PubMed  Google Scholar 

  • Fickweiler S, Abels C, Karrer S, Bäumler W, Landthaler M, Hofstädter F, Szeimies RM (1999) Photosensitization of human skin cell lines by ATMPn (9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene) in vitro: mechanism of action. J Photochem Photobiol B 48:27–35

    Article  CAS  PubMed  Google Scholar 

  • Haller T, Dietl P, Deetjen P, Volkl H (1996) The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release. Cell Calcium 19:157–165

    CAS  PubMed  Google Scholar 

  • Ito T (1978) Cellular and subcellular mechanisms of photodynamic action: the 1O2 hypothesis as a driving force in recent research. Photochem Photobiol 28:493–508

    CAS  Google Scholar 

  • Karrer S (2001) Topical sensitization—non-oncologic indications—others (scleroderma, sarcoidosis, eczema). In: Calzavara-Pinton P, Szeimies RM, Ortel B (eds) Photodynamic therapy and fluorescence diagnosis in dermatology. Elsevier Science, Amsterdam, pp 301–306

  • Karrer S, Szeimies RM, Ebert A, Fickweiler S, Abels C, Bäumler W, Landthaler M (1997) Dose-dependent photodynamic effects of 9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene in vitro. Lasers Med Sci 12:307–312

    Google Scholar 

  • Karrer S, Abels C, Landthaler M, Szeimies RM (2000) Topical photodynamic therapy for localized scleroderma. Acta Derm Venereol 80:26–27

    Article  CAS  PubMed  Google Scholar 

  • Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kilger R, Maier M, Szeimies RM, Bäumler W (2001) Bidirectional energy transfer between the triplet T1 state of photofrin and singlet oxygen in deuterium oxide. Chem Phys Lett 343:543–548

    Article  CAS  Google Scholar 

  • Landthaler M, Rück A, Szeimies RM (1993) Photodynamische Therapie von Tumoren der Haut. Hautarzt 44:69–74

    CAS  PubMed  Google Scholar 

  • Leunig M, Richert C, Gamarra F, Lumper W, Vogel E, Jocham D, Goetz AE (1993) Tumor localization kinetics of photofrin and three synthetic porphyrinoids in an amelanotic melanoma of the hamster. Br J Cancer 68:225–234

    CAS  PubMed  Google Scholar 

  • McCaughan JS Jr, Guy JT, Hicks W (1989) Photodynamic therapy for cutaneous and subcutaneous malignant neoplasms. Arch Surg 124:211–216

    PubMed  Google Scholar 

  • McHale AP, McHale l (1988) Use of a tetrazolium based colorimetric assay in assessing photoradiation therapy in vitro. Cancer Lett 41:315–321

    CAS  PubMed  Google Scholar 

  • Niks M, Otto M (1990) Towards an optimized MTT assay. J Immunol Methods 130:149–151

    Article  CAS  PubMed  Google Scholar 

  • Pass HI (1993) Photodynamic therapy in oncology: mechanism and clinical use. J Natl Cancer Inst 85:443–456

    CAS  PubMed  Google Scholar 

  • Penning LC, Dubbelman TMAR (1994) Fundamentals of photodynamic therapy: cellular and biochemical aspects. Anticancer Drugs 5:139–146

    CAS  PubMed  Google Scholar 

  • Pogue BW, Ortel B, Chen N, Redmond RW, Hasa T (2001) A photobiological and photophysical-based study of phototoxicity of two chlorines. Cancer Res 91:717–724

    Google Scholar 

  • Richert C, Wessels JM, Müller M, Kisters M, Benninghaus T, Goetz AE (1994) Photodynamic antitumor agents: β-methoxyethyl groups give access to functionalized porphycenes and enhance cellular uptake and activity. J Med Chem 37:2792–2807

    Google Scholar 

  • Robins E, Marcus PI (1963) Dynamics of acridine orange-cell interaction, I. Interrelationships of acridine orange particles and cytoplasmic reddening. J Cell Biol 18:237–250

    PubMed  Google Scholar 

  • Robins E, Marcus PI, Gonatas NK (1964) Dynamics of acridine orange-cell interaction, II. Dye-induced ultrastructural changes in multivesicular bodies (acridine orange particles). J Cell Biol 21:49–62

    PubMed  Google Scholar 

  • Rougée M, Bensasson RV (1986) Détermination des constantes de vitesse de désactivation de l’oxygéne singulet (1Δg) en présence de biomolécules. CR Acad Sci Paris, t 302, Série II, no. 20, pp 1223–1226

  • Star WM, Marijnissen HP, van den Berg-Blok AE, Versteeg JA, Franken KA, Reinhold HS (1986) Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res 46:2532–2540

    CAS  PubMed  Google Scholar 

  • Szeimies RM, Hein R, Bäumler W, Heine A, Landthaler M (1994) A possible new incoherent lamp for photodynamic treatment of superficial skin lesions. Acta Derm Venereol 74:117–119

    CAS  PubMed  Google Scholar 

  • Szeimies RM, Abels C, Fritsch C, Karrer S, Steinbach P, Bäumler W, Goerz G, Goetz AE, Landthaler M (1995) Wavelength dependency of photodynamic effects after sensitization with 5-aminolevulinic acid in vitro and in vivo. J Invest Dermatol 105:672–677

    CAS  PubMed  Google Scholar 

  • Szeimies RM, Karrer S, Abels C, Steinbach P, Fickweiler S, Messmann H, Bäumler W, Landthaler M (1996) 9-Acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene (ATMPn), a novel photosensitizer for photodynamic therapy: uptake kinetics and intracellular localisation. J Photochem Photobiol B 34:67–72

    Article  CAS  PubMed  Google Scholar 

  • Tilgen W, Boukamp P, Breitkreutz D, Dzarlieva RT, Engstner M, Haag D, Fusenig NE (1983) Preservation of morphological, functional, and karyotypic traits during long-term culture and in vivo passage of two human skin squamous cell carcinomas. Cancer Res 43:5995–6011

    CAS  PubMed  Google Scholar 

  • Vogel E, Köcher M, Schmickler H, Lex J (1986) Porphycene—a novel porphin isomer. Angew Chem 98:262–264

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bäumler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, K., Abels, C., Bäumler, W. et al. Structure-activity relationships of three differently substituted 2,7,12,17-tetrakis-(β-methoxyethyl) porphycene derivatives in vitro. Arch Dermatol Res 295, 535–541 (2004). https://doi.org/10.1007/s00403-004-0458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-004-0458-3

Keywords

Navigation