Skip to main content

Advertisement

Log in

Activation of phospholipase C-γ1 in human keratinocytes by hyperosmolar shock without enzyme phosphorylation

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Human keratinocytes are exposed to strong physical changes, and have the potentiality to react to external stimuli by switching on adaptation mechanisms. In hyperosmotically shocked keratinocytes a rapid and strong increase in calcium has been observed. We showed that this increase could not be prevented by growing the cells in medium devoid of calcium and in the presence of EGTA, indicating that the intracellular calcium increase was due to delivery from internal stores. Further, we observed an increased synthesis of dyacylglycerol and inositol trisphosphates after shock, suggesting that phospholipase C mediates both events. Our experiments demonstrated that osmotic shock in human keratinocytes leads to activation of phospholipase C-γ1, as measured using an in vitro assay system. This activation is independent of protein tyrosine phosphorylation and corresponded to a relocation of the enzyme to perinuclear membranes as shown by immunofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A, B
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-APB:

2-aminoethoxydiphenylborate

IP:

inositol phosphate

PA:

phosphatidic acid

PBS:

phosphate-buffered saline

PI-PLC:

phosphatidyl inositide-specific PLC

PIP:

phosphatidylinositolphosphate

PIP2 :

phosphatidylinositol(4,5)bisphosphate

PIP3 :

phosphatidylinositol(3,4,5)trisphosphate

PLC:

phospholipase C

PLD:

phospholipase D

References

  1. Paul A, Wilson S, Belham CM, Robinson CJ, Scott PH, Gould GW, Plevin R (1997) Stress-activated protein kinases: activation, regulation and function. Cell Signal 9:403–410

    Article  CAS  Google Scholar 

  2. English D (1996) Phosphatidic acid: a lipid messenger involved in intracellular and extracellular signalling. Cell Signal 8:341–347

    Article  CAS  Google Scholar 

  3. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  4. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  Google Scholar 

  5. Burg MB, Kwon ED, Kultz D (1996) Osmotic regulation of gene expression. FASEB J 10:1598–1606

    CAS  PubMed  Google Scholar 

  6. Van der Kaay J, Beck M, Gray A, Downes CP (1999) Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem 274:35963–35968

    Article  PubMed  Google Scholar 

  7. Exton JH (1999) Regulation of phospholipase D. Biochim Biophys Acta 1439:121–133

    CAS  PubMed  Google Scholar 

  8. Buschbeck M, Ghomashchi F, Gelb MH, Watson SP, Borsch-Haubold AG (1999) Stress stimuli increase calcium-induced arachidonic acid release through phosphorylation of cytosolic phospholipase A2. Biochem J 344:359–366

    Article  CAS  PubMed  Google Scholar 

  9. Rodríguez I, Kaszkin M, Holloschi A, Kabsch K, Marques MM, Mao X, Alonso A (2002) Hyperosmotic stress induces phosphorylation of cytosolic phospholipase A2 in HaCaT cells by an epidermal growth factor receptor-mediated process. Cell Signal 14:839–848

    Article  PubMed  Google Scholar 

  10. Lemmon LA, Falasca M, Schlessinger J, Ferguson KM (1997) Rergulatory recruitment of signalling molecules to the cell membrane by pleckstrin-homology domains. Trend Cell Biol 7:237–242

    Article  CAS  Google Scholar 

  11. Garmyn M, Mammone T, Pupe A, Gan D, Declercq L, Maes D (2001) Human keratinocytes respond to osmotic stress by p38 map kinase regulated induction of HSP70 and HSP27. J Invest Dermatol 117:1290–1295

    Article  CAS  PubMed  Google Scholar 

  12. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    CAS  PubMed  Google Scholar 

  13. Freichel M, Zink-Lorenz A, Holloschi A, Hafner M, Flokerzi V, Rauen F (1996) Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology 137:3842–3848

    CAS  PubMed  Google Scholar 

  14. Grynkiewicz G, Poenie M, Tsien R Y (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  Google Scholar 

  15. Bligh EG, Dyer W (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 260:3440–3450

    Google Scholar 

  16. Dascalu A, Matithyou A, Oron Y, Korenstein R (2000) A hyperosmotic stimulus elevates intracellular calcium and inhibits proliferation of a human keratinocyte cell line. J Invest Dermatol115:714–718

    Google Scholar 

  17. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem (Tokyo) 122:498–505

    Google Scholar 

  18. Gregory RB, Rychkov G, Barritt GJ (2001) Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated Ca2+ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J 54:285–290

    Article  Google Scholar 

  19. Haase I, Czarnetzki BM, Rosenbach T (1996) Thrombin and melittin activate phospholipase C in human HaCaT keratinocytes. Exp Dermatol 5:84–88

    CAS  PubMed  Google Scholar 

  20. Diakonova M, Payrastre B, van Velzen AG, Hage WJ, van Bergen en Henegouwen PM, Boonstra J, Cremers FF, Humbel BM (1995) Epidermal growth factor induces rapid and transient association of phospholipase C-gamma 1 with EGF-receptor and filamentous actin at membrane ruffles of A431 cells. J Cell Sci 108:2499–2509

    CAS  PubMed  Google Scholar 

  21. Barker SA, Caldwell KK, Pfeiffer JR, Wilson BS (1998) Wortmannin-sensitive phosphorylation, translocation, and activation of PLCgamma1, but not PLCgamma2, in antigen-stimulated RBL-2H3 mast cells. Mol Biol Cell 9:483–496

    CAS  PubMed  Google Scholar 

  22. Haase I, Liesegang C, Binting S, Henz BM, Rosenbach T (1997) Phospholipase C-mediated signaling is altered during HaCaT cell proliferation and differentiation. J Invest Dermatol 108:748–752

    CAS  PubMed  Google Scholar 

  23. Meisenhelder J, Suh PG, Rhee SG, Hunter T (1989) Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57:1109–1122

    CAS  Google Scholar 

  24. Sekiya F, Bae YS, Jhon DY, Hwang SC, Rhee SG (1999) AHNAK, a protein that binds and activates phospholipase C-gamma1 in the presence of arachidonic acid. J Biol Chem 274:13900–13907

    Article  CAS  Google Scholar 

  25. Sekiya F, Bae YS, Rhee SG (1999) Regulation of phospholipase C isozymes: activation of phospholipase C-gamma in the absence of tyrosine-phosphorylation. Chem Phys Lipids 98:3–11

    Article  CAS  PubMed  Google Scholar 

  26. Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  CAS  PubMed  Google Scholar 

  27. Cheng H, Kartebeck J, Kabsch K, Mao X, Marques MM, Alonso A (2002) Stress kinase p38 mediates EGFR transactivation by hyperosmolar concentrations of sorbitol. J Cell Physiol 192:234–243

    Article  CAS  PubMed  Google Scholar 

  28. 28 Haase I, Liesegang C, Henz BM, Rosenbach T (1997) Retinoic acid attenuates phospholipase C-mediated signaling in HaCaT keratinocytes. Arch Dermatol Res 289:533–539

    Article  CAS  PubMed  Google Scholar 

  29. Hwang SC, Jhon DY, Bae YS, Kim JH, Rhee SG (1996) Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J Biol Chem 271:18342–18349

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto T, Gamou S, Shimizu N, Kitajima Y, Nishikawa T (1995) Regulation of translocation of the desmoyokin/AHNAK protein to the plasma membrane in keratinocytes by protein kinase C. Exp Cell Res 217:258–266

    Article  CAS  PubMed  Google Scholar 

  31. 31 Yeo EJ, Provost JJ, Exton JH (1997) Dissociation of tyrosine phosphorylation and activation of phosphoinositide phospholipase C induced by the protein kinase C inhibitor Ro-31-8220 in Swiss 3T3 cells treated with platelet-derived growth factor. Biochim Biophys Acta 1356:308–320

    Article  CAS  PubMed  Google Scholar 

  32. Jones GA, Carpenter G (1993) The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem 268:20845–20850

    CAS  PubMed  Google Scholar 

  33. Zhou C, Horstman D, Carpenter G, Roberts MF (1999) Action of phosphatidylinositol-specific phospholipase Cgamma1 on soluble and micellar substrates. Separating effects on catalysis from modulation of the surface. J Biol Chem 274:2786–2793

    Article  CAS  PubMed  Google Scholar 

  34. Xu YJ, Panagia V, Shao Q, Wang X, Dhalla NS (1996) Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force. Am J Physiol 271:H651–659

    CAS  PubMed  Google Scholar 

  35. Ryder NS, Talwar HS, Reynolds NJ, Voorhees JJ, Fisher GJ (1993) Phosphatidic acid and phospholipase D both stimulate phosphoinositide turnover in cultured human keratinocytes. Cell Signal 5:787–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, I., Holloschi, A., Kaszkin, M. et al. Activation of phospholipase C-γ1 in human keratinocytes by hyperosmolar shock without enzyme phosphorylation. Arch Dermatol Res 295, 490–497 (2004). https://doi.org/10.1007/s00403-004-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-004-0457-4

Keywords

Navigation