Skip to main content

Advertisement

Log in

Human VAT-1: a calcium-regulated activation marker of human epithelial cells

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Background and aims

Human VAT-1 (hVAT-1) is a homologue of the synaptic vesicle membrane protein of Torpedo californica. Its coding gene is located near the BRCA1 locus and thus hVAT-1 may be linked to an inherited predisposition to breast and ovary cancer. However, the hVAT-1 protein expression pattern in normal epithelial tissues such as skin, mammary gland and ovary, as well as in tumours of the mammary gland and ovary, has not been studied.

Methods

To address this issue, an immunohistological analysis of biopsies of normal epidermis and lesional epidermis of bullous pemphigoid and pemphigus vulgaris patients was undertaken.

Results

hVAT-1-expression was observed in basal keratinocytes of lesional epidermis of bullous pemphigoid patients but not in normal epidermis or in lesional epidermis of pemphigus vulgaris patients. Moreover, hVAT-1 expression in HaCaT cells was found to be calcium-dependent. Normal and malignant mammary and ovary epithelium were found to be hVAT-1-negative.

Conclusions

Our results indicate that hVAT-1 exerts a specific function in keratinocyte physiology, in particular in calcium-regulated processes, with no evident deregulation in malignancies of the breast and ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2a–c.
Fig. 3A, B.
Fig. 4A–C.

Similar content being viewed by others

Abbreviations

BRCA1:

Breast-related cancer antigen 1

DMEM:

Dulbecco's modified Eagle's medium

EDTA:

Ethylenediamine tetraacetate

ELISA:

Enzyme-linked immunosorbent assay

FCS:

Fetal calf serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GST:

Glutathione-S-transferase

HRP:

Horseradish peroxidase

hVAT-1:

Human VAT-1

NHEK:

Normal human epidermal keratinocytes

PBS:

Phosphate-buffered saline

TBS:

Tris-buffered saline

VAT-1:

Vesicle-amine-transport protein-1

References

  1. Coulombe PA (1997) Towards a molecular definition of keratinocyte activation after acute injury to stratified epithelia. Biochem Biophys Res Commun 236:231–238

    Article  CAS  PubMed  Google Scholar 

  2. Fang KS, Farboud B, Nuccitelli R, Isseroff RR (1998) Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111:751–756

    Article  CAS  PubMed  Google Scholar 

  3. Grzesiak JJ, Pierschbacher MD (1995) Changes in the concentrations of extracellular Mg++ and Ca++ down-regulate E cadherin and up-regulate alpha 2 beta 1 integrin function, activating keratinocyte migration on type I collagen. J Invest Dermatol 104:768–774

    CAS  PubMed  Google Scholar 

  4. Grzesiak JJ, Pierschbacher MD (1995) Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest 95:227–233

    CAS  PubMed  Google Scholar 

  5. Sank A, Chi M, Shima T, Reich R, Martin GR (1989) Increased calcium levels alter cellular and molecular events in wound healing. Surgery 106:1141–1147

    CAS  PubMed  Google Scholar 

  6. Magee AI, Lytton NA, Watt FM (1987) Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Exp Cell Res 172:43–53

    CAS  PubMed  Google Scholar 

  7. Schaefer BM, Wallich R, Schmolke K, Fink W, Bechtel M, Reinartz J, Kramer MD (2000) Immunohistochemical and molecular characterization of cultured keratinocytes after dispase-mediated detachment from the growth substratum. Exp Dermatol 9:58–64

    Article  CAS  PubMed  Google Scholar 

  8. Linial M, Miller K, Scheller RH (1989) VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles. Neuron 2:1265–1273

    CAS  PubMed  Google Scholar 

  9. Persson B, Zigler JS Jr, Jornvall H (1994) A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur J Biochem 226:15–22

    CAS  PubMed  Google Scholar 

  10. Levius O, Linial M (1993) VAT-1 from Torpedo synaptic vesicles is a calcium binding protein: a study in bacterial expression systems. Cell Mol Neurobiol 13:483–492

    CAS  PubMed  Google Scholar 

  11. Hayess K, Kraft R, Sachsinger J, et al (1998) Mammalian protein homologous to VAT-1 of Torpedo californica: isolation from Ehrlich ascites tumor cells, biochemical characterization, and organization of its gene. J Cell Biochem 69:304–315

    Article  CAS  PubMed  Google Scholar 

  12. Smith TM, Lee MK, Szabo CI, et al (1996) Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res 6:1029–1049

    CAS  PubMed  Google Scholar 

  13. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    CAS  PubMed  Google Scholar 

  14. Linial M (1993) VAT-1 from Torpedo electric organ forms a high-molecular-mass protein complex within the synaptic vesicle membrane. Eur J Biochem 216:189–197

    CAS  PubMed  Google Scholar 

  15. Linial M, Levius O, Ilouz N, Parnas D (1995) The effect of calcium levels on synaptic proteins. A study on VAT-1 from Torpedo. J Physiol 89:103–112

    Article  CAS  Google Scholar 

  16. Boukamp P, Petrussevska RT, Breitkreutz D, et al (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    CAS  PubMed  Google Scholar 

  17. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–643

    CAS  PubMed  Google Scholar 

  18. Rosen CF, Poon R, Drucker DJ (1995) UVB radiation-activated genes induced by transcriptional and posttranscriptional mechanisms in rat keratinocytes. Am J Physiol 268:C846–C855

    CAS  PubMed  Google Scholar 

  19. Schaefer BM, Reinartz J, Bechtel MJ, Inndorf S, Lang E, Kramer MD (1996) Dispase-mediated basal detachment of cultured keratinocytes induces urokinase-type plasminogen activator (uPA) and its receptor (uPA-R, CD87). Exp Cell Res 228:246–253

    Article  CAS  PubMed  Google Scholar 

  20. Vicanova J, Boelsma E, Mommaas AM, et al (1998) Normalization of epidermal calcium distribution profile in reconstructed human epidermis is related to improvement of terminal differentiation and stratum corneum barrier formation. J Invest Dermatol 111:97–106

    Article  CAS  PubMed  Google Scholar 

  21. Chomczynski P, Sacchi N (1986) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  Google Scholar 

  22. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  23. Gefter ML, Margulies DH, Scharff MD (1977) A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somat Cell Genet 3:231–236

    CAS  PubMed  Google Scholar 

  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  25. Seishima M, Esaki C, Osada K, Mori S, Hashimoto T, Kitajima Y (1995) Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1,4,5 triphosphate in DJM-1 cells, a squamous cell carcinoma line. J Invest Dermatol 104:33–37

    Google Scholar 

  26. Esaki C, Seishima M, Yamada T, et al (1995) Pharmacologic evidence for involvement of phospholipase C in pemphigus IgG-induced inositol 1,4,5-trisphosphate generation, intracellular calcium increase, and plasminogen activator secretion in DJM-1 cells, a squamous cell carcinoma line. J Invest Dermatol 105:329–333

    Google Scholar 

  27. Kitajima Y, Aoyama Y, Seishima M (1999) Transmembrane signaling for adhesive regulation of desmosomes and hemidesmosomes, and for cell-cell detachment induced by pemphigus IgG in cultured keratinocytes: involvement of protein kinase C. J Investig Dermatol Symp Proc 4:137–144

    Google Scholar 

  28. Owens DW, Brunton VG, Parkinson EK, Frame MC (2000) E-cadherin at the cell periphery is a determinant of keratinocyte differentiation in vitro. Biochem Biophys Res Commun 269:369–376

    Article  CAS  PubMed  Google Scholar 

  29. Fairley JA (1988) Calcium and the skin. Arch Dermatol 124:443–444

    Article  CAS  PubMed  Google Scholar 

  30. Fairley JA (1991) Calcium metabolism and the pathogenesis of dermatologic disease. Semin Dermatol 10:225–231

    CAS  PubMed  Google Scholar 

  31. Stanley JR (1995) Autoantibodies against adhesion molecules and structures in blistering skin diseases. J Exp Med 181:169–179

    CAS  PubMed  Google Scholar 

  32. Lin MS, Mascaro JM Jr, Liu Z, Espana A, Diaz LA (1997) The desmosome and hemidesmosome in cutaneous autoimmunity. Clin Exp Immunol 107 [Suppl 1]:9–15

  33. Lever WF, Schaumburg-Lever G (1990) Histopathology of the skin, 7th edn. J.B. Lippincott, Philadelphia

  34. Ahn SK, Hwang SM, Jiang SJ, Choi EH, Lee SH (1999) The changes of epidermal calcium gradient and transitional cells after prolonged occlusion following tape stripping in the murine epidermis. J Invest Dermatol 113:189–195

    Article  CAS  PubMed  Google Scholar 

  35. Weiss RA, Eichner R, Sun TT (1984) Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol 98:1397–1406

    CAS  PubMed  Google Scholar 

  36. Linial M, Levius O (1993) The protein VAT-1 from Torpedo electric organ exhibits an ATPase activity. Neurosci Lett 152:155–157

    Article  CAS  PubMed  Google Scholar 

  37. Linial M, Levius O (1993) VAT-1 from Torpedo is a membranous homologue of zeta crystallin. FEBS Lett 315:91–94

    Article  CAS  PubMed  Google Scholar 

  38. Friedman LS, Ostermeyer EA, Lynch ED, et al (1995) 22 genes from chromosome 17q21: cloning, sequencing, and characterization of mutations in breast cancer families and tumors. Genomics 25:256–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Antje Heidtmann and Sabine Wentrup for the immunohistological staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit M. Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, J., Foekens, J., Timmermans, M. et al. Human VAT-1: a calcium-regulated activation marker of human epithelial cells. Arch Dermatol Res 295, 203–210 (2003). https://doi.org/10.1007/s00403-003-0421-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-003-0421-8

Keywords

Navigation