Skip to main content

Advertisement

Log in

Influence of bone mineral density on femoral stem subsidence after cementless THA

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Femoral stem subsidence can lead to aseptic loosening after total hip arthroplasty (THA). Low bone mineral density (BMD) is a risk factor for stem subsidence as it can affect the initial stability and osteointegration. We evaluated whether reduced bone mineral density is related to higher subsidence of the femoral stem after primary cementless THA with enhanced recovery rehabilitation.

Methods

79 patients who had undergone primary cementless THA with enhanced recovery rehabilitation were analyzed retrospectively. Subsidence of the femoral stem was measured on standing pelvic anterior–posterior radiographs after 4–6 weeks and one year. Patient individual risk factors for stem subsidence (stem size, canal flare index, canal fill ratio, body mass index (BMI), demographic data) were correlated. Dual X-ray absorptiometry (DXA) scans were performed of the formal neck and the lumbar spine including the calculation of T-score and Z-score. Patient-reported outcome measures were evaluated 12 months postoperatively.

Results

Stem subsidence appeared regardless of BMD (overall collective 2.3 ± 1.64 mm). Measure of subsidence was even higher in patients with normal BMD (2.8 ± 1.7 mm vs. 2.0 ± 1.5 mm, p = 0.05). High BMI was correlated with increased stem subsidence (p = 0.015). Subsidence had no impact on improvement of patient-related outcome measures (WOMAC, EQ-5D-5L and EQ-VAS) after THA. Patients with low BMD reported lower quality of life 12 month postoperatively compared to patients with normal BMD (EQ-5D-5L 0.82 vs. 0.91, p = 0.03).

Conclusion

Stable fixation of a cementless stem succeeds also in patients with reduced BMD. Regarding stem subsidence, enhanced recovery rehabilitation can be safely applied in patients with low BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519. https://doi.org/10.1016/S0140-6736(07)60457-7

    Article  PubMed  Google Scholar 

  2. Australian Orthopaedic Association National Joint Replacement Registry (2018) Hip, knee & shoulder arthroplasty: 2018 annual report. AOA, Adelaide Australia

    Google Scholar 

  3. Campbell D, Mercer G, Nilsson KG et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop 35(4):483–488. https://doi.org/10.1007/s00264-009-0913-z

    Article  PubMed  Google Scholar 

  4. Froimson MI, Garino J, Machenaud A et al (2007) Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplast 22(1):1–7. https://doi.org/10.1016/j.arth.2006.03.003

    Article  Google Scholar 

  5. Al-Najjim M, Khattak U, Sim J et al (2016) Differences in subsidence rate between alternative designs of a commonly used uncemented femoral stem. J Orthop 13(4):322–326. https://doi.org/10.1016/j.jor.2016.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ström H, Nilsson O, Milbrink J et al (2007) Early migration pattern of the uncemented CLS stem in total hip arthroplasties. Clin Orthop Relat Res 454:127–132. https://doi.org/10.1097/01.blo.0000238785.98606.9d

    Article  PubMed  Google Scholar 

  7. Selvaratnam V, Shetty V, Sahni V (2015) Subsidence in collarless Corail hip replacement. Open Orthop J 9:194–197. https://doi.org/10.2174/1874325001509010194

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warth LC, Grant TW, Naveen NB et al (2020) Inadequate metadiaphyseal fill of a modern taper-wedge stem increases subsidence and risk of aseptic loosening: technique and distal canal fill matter! J Arthroplast 35(7):1868–1876. https://doi.org/10.1016/j.arth.2020.02.024

    Article  Google Scholar 

  9. Khanuja HS, Vakil JJ, Goddard MS et al (2011) Cementless femoral fixation in total hip arthroplasty. J Bone Jt Surg Am 93(5):500–509. https://doi.org/10.2106/JBJS.J.00774

    Article  Google Scholar 

  10. Aro HT, Alm JJ, Moritz N et al (2012) Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: a 2-year RSA study of 39 patients. Acta Orthop 83(2):107–114. https://doi.org/10.3109/17453674.2012.678798

    Article  PubMed  PubMed Central  Google Scholar 

  11. Piarulli G, Rossi A, Zatti G (2013) Osseointegration in the elderly. Aging Clin Exp Res 25(Suppl):1. https://doi.org/10.1007/s40520-013-0103-0

    Article  Google Scholar 

  12. Nixon M, Taylor G, Sheldon P et al (2007) Does bone quality predict loosening of cemented total hip replacements? J Bone Joint Surg Br 89(10):1303–1308. https://doi.org/10.1302/0301-620X.89B10.19038

    Article  CAS  PubMed  Google Scholar 

  13. Franklin J, Malchau H (2007) Risk factors for periprosthetic femoral fracture. Injury 38(6):655–660. https://doi.org/10.1016/j.injury.2007.02.049

    Article  PubMed  Google Scholar 

  14. Narayanan R, Elbuluk Am, Chen KK et al (2021) Does femoral morphology and stem alignment influence outcomes of cementless total hip arthroplasty with proximally coated double-tapered titanium stems? Hip Int: J Clin Exp Res Hip Pathol Ther 31(3):354–361. https://doi.org/10.1177/1120700019891702

    Article  Google Scholar 

  15. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194. https://doi.org/10.1359/JBMR.050304

    Article  PubMed  Google Scholar 

  16. Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83(982):509–517. https://doi.org/10.1136/pgmj.2007.057505

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moritz N, Alm JJ, Lankinen P et al (2011) Quality of intertrochanteric cancellous bone as predictor of femoral stem RSA migration in cementless total hip arthroplasty. J Biomech 44(2):221–227. https://doi.org/10.1016/j.jbiomech.2010.10.012

    Article  PubMed  Google Scholar 

  18. Mears SC, Richards Am, Knight TA et al (2009) Subsidence of uncemented stems in osteoporotic and non-osteoporotic cadaveric femora. Proc Inst Mech Eng Part H, J Eng Med 223(2):189–194. https://doi.org/10.1243/09544119JEIM445

    Article  CAS  Google Scholar 

  19. Noble PC, Alexander JW, Lindahl LJ et al (1988) The anatomic basis of femoral component design. Clin Orthop Relat Res 235:148–165

    Article  Google Scholar 

  20. Zhao R, Cai H, Liu Y et al (2017) Risk factors for intraoperative proximal femoral fracture during primary cementless THA. Orthopedics 40(2):e281–e287. https://doi.org/10.3928/01477447-20161116-06

    Article  PubMed  Google Scholar 

  21. Vidalain J-P (2011) Twenty-year results of the cementless Corail stem. Int Orthop 35(2):189–194. https://doi.org/10.1007/s00264-010-1117-2

    Article  PubMed  Google Scholar 

  22. Russell LA (2013) Osteoporosis and orthopedic surgery: effect of bone health on total joint arthroplasty outcome. Curr Rheumatol Rep 15(11):1–6. https://doi.org/10.1007/s11926-013-0371-x

    Article  Google Scholar 

  23. Konstantinidis L, Helwig P, Hirschmüller A et al (2016) When is the stability of a fracture fixation limited by osteoporotic bone? Injury 47(Suppl):2. https://doi.org/10.1016/S0020-1383(16)47005-1

    Article  Google Scholar 

  24. Dyreborg K, Sørensen MS, Flivik G et al (2021) Preoperative BMD does not influence femoral stem subsidence of uncemented THA when the femoral T-score is > – 2.5. Acta Orthop 92(5):538–543. https://doi.org/10.1080/17453674.2021.1920163

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aro HT, Engelke K, Mattila K et al (2021) Volumetric bone mineral density in cementless total hip arthroplasty in postmenopausal women: effects on primary femoral stem stability and clinical recovery. J Bone Jt Surg Am 103(12):1072–1082. https://doi.org/10.2106/JBJS.20.01614

    Article  Google Scholar 

  26. Nazari-Farsani S, Vuopio M, Löyttyniemi E et al (2021) Contributing factors to the initial femoral stem migration in cementless total hip arthroplasty of postmenopausal women. J Biomech. https://doi.org/10.1016/j.jbiomech.2021.110262

    Article  Google Scholar 

  27. Troelsen A, Malchau E, Sillesen N et al (2013) A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox. Clin Orthop Relat Res 471(7):2052–2059. https://doi.org/10.1007/s11999-013-2941-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vind TD, Jørgensen PB, Vainorius D et al (2023) Migration pattern of cemented Exeter short stem in Dorr type A femurs. A prospective radiostereometry study with 2-year follow-up. Arch Orthop Trauma Surg 143(2):1071–1080

    Article  Google Scholar 

  29. Leiss F, Götz JS, Meyer M et al (2022) Differences in femoral component subsidence rate after THA using an uncemented collarless femoral stem: full weight-bearing with an enhanced recovery rehabilitation versus partial weight-bearing. Arch Orthop Trauma Surg 142(4):673–680

    Article  PubMed  Google Scholar 

  30. Ries C, Boese CK, Dietrich F et al (2019) Femoral stem subsidence in cementless total hip arthroplasty: a retrospective single-centre study. Int Orthop 43(2):307–314. https://doi.org/10.1007/s00264-018-4020-x

    Article  PubMed  Google Scholar 

  31. Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871. https://doi.org/10.1016/s0021-9290(01)00040-9

    Article  CAS  PubMed  Google Scholar 

  32. Søballe K, Toksvig-Larsen S, Gelineck J et al (1993) Migration of hydroxyapatite coated femoral prostheses. A Roentgen stereophotogrammetric study. J Bone Jt Surg Br 75(5):681–687. https://doi.org/10.1302/0301-620X.75B5.8397213

    Article  Google Scholar 

  33. Nebergall AK, Rolfson O, Rubash HE et al (2016) Stable fixation of a cementless, proximally coated, double wedged, double tapered femoral stem in total hip arthroplasty: a 5-year radiostereometric analysis. J Arthroplasty 31(6):1267–1274. https://doi.org/10.1016/j.arth.2015.11.036

    Article  PubMed  Google Scholar 

  34. Kärrholm J, Borssén B, Löwenhielm G et al (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Jt Surg Br 76(6):912–917

    Article  Google Scholar 

  35. Engh CA, O’Connor D, Jasty M et al (1992) Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res 285:13–29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Leiss.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

The study was approved by Ethics Committee of the University Hospital Regensburg (22-2764-104).

Consent to participate

For this type of study consent to participate was not required.

Consent for publication

For this type of study consent for publication was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiss, F., Goetz, J.S., Schindler, M. et al. Influence of bone mineral density on femoral stem subsidence after cementless THA. Arch Orthop Trauma Surg 144, 451–458 (2024). https://doi.org/10.1007/s00402-023-05006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-05006-6

Keywords

Navigation