Skip to main content

Advertisement

Log in

Do age, gender, and region affect tibial slope? A multi-center study

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Tibial slope is a parameter that is important to recognize in knee kinematics and knee surgery. A very wide range of values governing posterior tibial slope exist in the literature. This study is based on the hypothesis that age, gender and region may have an effect on the tibial slope.

Materials and methods

A total of 1800 lateral knee radiographies from five different countries [Turkey, Germany, Italy, Spain, and the United Kingdom (UK)] were utilized to measure the native posterior tibial slope. Participants were categorized in deciles with each decade of age after 40 years determined as a separate age group. Accordingly, four different age categories were formed in total, namely, the 40- to 49-, 50- to 59-, 60–69, and 70- to 79-year-old groups. Patients with severe knee osteoarthritis, those with a history of arthroscopic and open surgery around the knee, and those with severe morbid obesity and those outside the specified age group were excluded from the study. The angle between the line tangential to the medial tibial plateau and the proximal anatomical axis of the tibia was measured.

Results

The tibial slope values of both males and females in the Turkish population were found to be higher than those in other populations. It was observed that tibial slope values increased with age in females in all populations, except for those in the Spanish and UK populations. In the male population, it was found that tibial slope values increased with age in all populations except in the Spanish population.

Conclusions

Region, age, and gender affect tibial slope in different populations in various ways. Our study shows that the region an individual lives in and living conditions affect the tibial slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahmad R, Patel A, Mandalia V, Toms A (2016) Posterior tibial slope: effect on, and Interaction with, knee kinematics. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.O.00057

    Article  PubMed  Google Scholar 

  2. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40:1673–1681. https://doi.org/10.1177/0363546512442307

    Article  PubMed  Google Scholar 

  3. Fujimoto E, Sasashige Y, Tomita T et al (2014) Significant effect of the posterior tibial slope on the weight-bearing, midflexion in vivo kinematics after cruciate-retaining total knee arthroplasty. J Arthroplasty 29:2324–2330. https://doi.org/10.1016/J.ARTH.2013.10.018

    Article  PubMed  Google Scholar 

  4. Korthaus A, Krause M, Pagenstert G et al (2022) Tibial slope in the posterolateral quadrant with and without ACL injury. Arch Orthop Trauma Surg 142:3917–3925. https://doi.org/10.1007/S00402-021-04298-W

    Article  CAS  PubMed  Google Scholar 

  5. Dejour H, Bonnin M (1994) Tibial translation aj3ter anterior cruciate ligament rupture two radiological tests compared

  6. Moore TM, Harvey JPJR (1974) Roentgenographic measurement of tibial-plateau depression due to fracture. J Bone Jt Surg 56:155–160

    Article  CAS  Google Scholar 

  7. Brazier J, Migaud H, Gougeon F et al (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200

    CAS  Google Scholar 

  8. Haddad B, Konan S, Mannan K, Scott G (2012) Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg 78:757–763

    PubMed  Google Scholar 

  9. de Boer JJ, Blankevoort L, Kingma I, Vorster W (2009) In vitro study of inter-individual variation in posterior slope in the knee joint. Clin Biomech (Bristol, Avon) 24:488–492. https://doi.org/10.1016/J.CLINBIOMECH.2009.03.008

    Article  PubMed  Google Scholar 

  10. Hashemi J, Chandrashekar N, Gill B et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am 90:2724–2734. https://doi.org/10.2106/JBJS.G.01358

    Article  Google Scholar 

  11. Jenny JY, Boéri C, Ballonzoli L, Meyer N (2005) Difficulties and reproducibility of radiological measurement of the proximal tibial axis according to Lévigne. Rev Chir Orthop Reparatrice Appar Mot 91:658–663. https://doi.org/10.1016/S0035-1040(05)84470-8

    Article  PubMed  Google Scholar 

  12. Hudek R, Schmutz S, Regenfelder F et al (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072. https://doi.org/10.1007/S11999-009-0711-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Misir A, Yildiz KI, Kizkapan TB (2019) Wider femoral and mediolaterally narrower tibial components are required for total knee arthroplasty in Turkish patients. Knee Surg Sports Traumatol Arthrosc 27:2155–2166. https://doi.org/10.1007/S00167-019-05448-9

    Article  PubMed  Google Scholar 

  14. Li P, Tsai TY, Li JS et al (2014) Morphological measurement of the knee: race and sex effects. Acta Orthop Belg 80:260–268

    PubMed  Google Scholar 

  15. Han H, Oh S, Chang CB, Kang SB (2016) Anthropometric difference of the knee on MRI according to gender and age groups. Surg Radiol Anat 38:203–211. https://doi.org/10.1007/S00276-015-1536-2

    Article  PubMed  Google Scholar 

  16. Kim TK, Phillips M, Bhandari M et al (2017) What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clin Orthop Relat Res 475:170–182. https://doi.org/10.1007/S11999-016-5097-4

    Article  CAS  PubMed  Google Scholar 

  17. Medda S, Kundu R, Sengupta S, Pal AK (2017) Anatomical variation of posterior slope of tibial plateau in adult Eastern Indian population. Indian J Orthop 51:69–74. https://doi.org/10.4103/0019-5413.197545

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kacmaz IE, Topkaya Y, Basa CD et al (2020) Posterior tibial slope of the knee measured on X-rays in a Turkish population. Surg Radiol Anat 42:673–679. https://doi.org/10.1007/S00276-020-02430-W

    Article  PubMed  Google Scholar 

  19. Kuwano T, Urabe K, Miura H et al (2005) Importance of the lateral anatomic tibial slope as a guide to the tibial cut in total knee arthroplasty in Japanese patients. J Orthop Sci 10:42–47. https://doi.org/10.1007/S00776-004-0855-7

    Article  PubMed  Google Scholar 

  20. Moller JT, Weeth RE, Keller JO, Nielsen S (1985) Unicompartmental arthroplasty of the knee. Cadaver study of the importance of the anterior cruciate ligament. Acta Orthop Scand 56:120–123. https://doi.org/10.3109/17453678508994333

    Article  CAS  PubMed  Google Scholar 

  21. Pangaud C, Laumonerie P, Dagneaux L et al (2020) Measurement of the posterior tibial slope depends on ethnicity, sex, and lower limb alignment: a computed tomography analysis of 378 healthy participants. Orthop J Sports Med. https://doi.org/10.1177/2325967119895258

    Article  PubMed  PubMed Central  Google Scholar 

  22. Winkler PW, Godshaw BM, Karlsson J et al (2021) Posterior tibial slope: the fingerprint of the tibial bone. Knee Surg Sports Traumatol Arthrosc 29:1687–1689. https://doi.org/10.1007/S00167-021-06578-9

    Article  PubMed  Google Scholar 

  23. Bisicchia S, Scordo GM, Prins J, Tudisco C (2017) Do ethnicity and gender influence posterior tibial slope? J Orthop Traumatol 18:319–324. https://doi.org/10.1007/S10195-017-0443-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen Y, Ding J, Dai S et al (2022) Radiographic measurement of the posterior tibial slope in normal Chinese adults: a retrospective cohort study. BMC Musculoskelet Disord. https://doi.org/10.1186/S12891-022-05319-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun YH, Chen LX, de Jiao Z et al (2015) Age-related changes of posterior tibial slope and its roles in anterior cruciate ligament injury. Int Surg 101:70–77. https://doi.org/10.9738/INTSURG-D-15-00127.1

    Article  Google Scholar 

  26. Weinberg DS, Williamson DFK, Gebhart JJ et al (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45:106–113. https://doi.org/10.1177/0363546516662449

    Article  Google Scholar 

  27. Hashemi J, Chandrashekar N, Mansouri H et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62. https://doi.org/10.1177/0363546509349055

    Article  PubMed  Google Scholar 

  28. Thilak J, George MJ (2016) Patient - implant dimension mismatch in total knee arthroplasty: is it worth worrying? An Indian scenario. Indian J Orthop 50:512–517. https://doi.org/10.4103/0019-5413.189618

    Article  PubMed  Google Scholar 

  29. Fan L, Xu T, Li X et al (2017) Morphologic features of the distal femur and tibia plateau in Southeastern Chinese population: a cross-sectional study. Medicine. https://doi.org/10.1097/MD.0000000000008524

    Article  PubMed  PubMed Central  Google Scholar 

  30. Calek AK, Hochreiter B, Hess S et al (2022) High inter- and intraindividual differences in medial and lateral posterior tibial slope are not reproduced accurately by conventional TKA alignment techniques. Knee Surg Sports Traumatol Arthrosc 30:882–889. https://doi.org/10.1007/S00167-021-06477-Z

    Article  PubMed  Google Scholar 

  31. Weber P, Gollwitzer H (2022) Arthroplasty of the knee: current techniques for implant alignment. Z Orthop Unfall 160:149–159. https://doi.org/10.1055/A-1304-3854

    Article  PubMed  Google Scholar 

  32. Chen Z, Chen K, Yan Y et al (2021) Effects of posterior tibial slope on the mid-term results of medial unicompartmental knee arthroplasty. Arthroplasty (London, England). https://doi.org/10.1186/S42836-021-00070-Y

  33. Okazaki K, Tashiro Y, Mizu-uchi H et al (2014) Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty. Knee 21:806–809. https://doi.org/10.1016/J.KNEE.2014.02.019

    Article  PubMed  Google Scholar 

  34. Seo SS, Kim CW, Kim JH, Min YK (2013) Clinical results associated with changes of posterior tibial slope in total knee arthroplasty. Knee Surg Relat Res 25:25–29. https://doi.org/10.5792/KSRR.2013.25.1.25

    Article  PubMed  PubMed Central  Google Scholar 

  35. Okamoto S, Mizu-uchi H, Okazaki K et al (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 30:1439–1443. https://doi.org/10.1016/J.ARTH.2015.02.042

    Article  PubMed  Google Scholar 

  36. Weber P, Gollwitzer H (2021) Kinematic alignment in total knee arthroplasty. Oper Orthop Traumatol 33:525–537. https://doi.org/10.1007/S00064-021-00729-4

    Article  PubMed  Google Scholar 

  37. Bernhardson AS, DePhillipo NN, Daney BT et al (2019) Posterior tibial slope and risk of posterior cruciate ligament injury. Am J Sports Med 47:312–317. https://doi.org/10.1177/0363546518819176

    Article  PubMed  Google Scholar 

  38. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/S00167-011-1547-4

  39. Giffin JR, Vogrin TM, Zantop T et al (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382. https://doi.org/10.1177/0363546503258880

    Article  PubMed  Google Scholar 

  40. Hees T, Zielke J, Petersen W (2023) Effect of anterior tibial bowing on measurement of posterior tibial slope on conventional X-rays. Arch Orthop Trauma Surg. https://doi.org/10.1007/S00402-022-04507-0

    Article  PubMed  Google Scholar 

  41. Sessa P, Fioravanti G, Giannicola G, Cinotti G (2015) The risk of sacrificing the PCL in cruciate retaining total knee arthroplasty and the relationship to the sagittal inclination of the tibial plateau. Knee 22:51–55. https://doi.org/10.1016/J.KNEE.2014.10.006

    Article  PubMed  Google Scholar 

  42. Waiwaiole A, Gurbani A, Motamedi K et al (2016) Relationship of ACL injury and posterior tibial slope with patient age, sex, and race. Orthop J Sports Med. https://doi.org/10.1177/2325967116672852

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nazzal EM, Zsidai B, Pujol O et al (2022) Considerations of the posterior tibial slope in anterior cruciate ligament reconstruction: a scoping review. Curr Rev Musculoskelet Med. https://doi.org/10.1007/S12178-022-09767-2

    Article  PubMed  Google Scholar 

  44. Rozinthe A, van Rooij F, Demey G et al (2022) Tibial slope correction combined with second revision ACLR grants good clinical outcomes and prevents graft rupture at 7–15-year follow-up. Knee Surg Sports Traumatol Arthrosc 30:2336–2341. https://doi.org/10.1007/S00167-021-06750-1

    Article  PubMed  Google Scholar 

  45. Weiler A, Gwinner C, Wagner M et al (2022) Significant slope reduction in ACL deficiency can be achieved both by anterior closing-wedge and medial open-wedge high tibial osteotomies: early experiences in 76 cases. Knee Surg Sports Traumatol Arthrosc 30:1967–1975. https://doi.org/10.1007/S00167-022-06861-3

    Article  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Akçaalan.

Ethics declarations

Conflict of interest

There is no conflict of interest of the authors.

Ethical approval

Ethical approval obtained.

Informed consent

This study is a radiographic study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (HEIC 2153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçaalan, S., Akkaya, M., Dogan, M. et al. Do age, gender, and region affect tibial slope? A multi-center study. Arch Orthop Trauma Surg 143, 6983–6991 (2023). https://doi.org/10.1007/s00402-023-04976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04976-x

Keywords

Navigation