Skip to main content

Advertisement

Log in

Are there any correlations among the number of discopathy levels and pain intensity or disability in patients with symptomatic low back pain?

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Low back pain (LBP) is considered a civilization disease that affects people in an increasing number. Discopathy (degeneration of intervertebral discs) is recognised as one of LBP causes. Still, the relationship between the number of discopathy levels and LBP remains unclear. The aim of this study was to evaluate the correlation between the number of discopathy levels with intensity of LBP, functional level and the degree of disability.

Materials and methods

The prospective, cohort study involved 200 patients aged 27 to 55 years (44.9 ± 9.2 years) with single- or multilevel lumbar discopathy confirmed by imaging examinations. Functional examination included NRSscale, goniometric measurements, Modified Laitinen Pain Questionnaire, Oswestry Disability Index and Back Pain Function Scale.

Results

There were statistically significant positive correlations between the number of discopathy levels and the age of the subjects (r = 0.266; p = 0.000), BMI (r = 0.158; p = 0.029) and ODI (r = 0.157; p = 0.026). Positive correlation (r = 0.142; p = 0.044) was also observed between the results of Fingertip-to-floortest and the number of levels of discopathy.

Conclusions

The number of levels of discopathy was depended on the age and BMI of the patients. It had no effect on pain intensity, range of rotational motion of the lumbar spine and functional status of patients. As the number of levels of discopathy increased, a higher degree of everyday disability was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data and material will be available on request to the corresponding author.

References

  1. Bråten LCH, Schistad EI, Espeland A et al (2020) Association of Modic change types and their short tau inversion recovery signals with clinical characteristics—a cross sectional study of chronic low back pain patients in the AIM-study. BMC Musculoskelet Disord 21(1):368. https://doi.org/10.1186/s12891-020-03381-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Joergensen AC, Hestbaek L, Andersen PK et al (2019) Epidemiology of spinal pain in children: a study within the Danish National Birth Cohort. Eur J Pediatr 178(5):695–706. https://doi.org/10.1007/s00431-019-03326-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manchikanti L, Singh V, Falco FJ et al (2014) Epidemiology of low back pain in adults. Neuromodulation 17(2):3–10. https://doi.org/10.1111/ner.12018

    Article  PubMed  Google Scholar 

  4. O’Sullivan K, O’Sullivan PB, O’Keeffe M (2019) The Lancet series on low back pain: reflections and clinical implications. Br J Sports Med 53(7):392–393. https://doi.org/10.1136/bjsports-2018-099671

    Article  PubMed  Google Scholar 

  5. Hall A, Coombs D, Richmond H et al (2021) What do the general public believe about the causes, prognosis and best management strategies for low back pain? A cross-sectional study. BMC Public Health 21(1):682. https://doi.org/10.1186/s12889-021-10664-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boisson M, Lefèvre-Colau MM, Rannou F et al (2018) Active discopathy: a clinical reality. RMD Open 4(1):e000660. https://doi.org/10.1136/rmdopen-2018-000660

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brinjikji W, Diehn FE, Jarvik JG et al (2015) MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol 36(12):2394–2399. https://doi.org/10.3174/ajnr.A4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hebelka H, Brisby H, Hansson T (2014) Comparison between pain at discography and morphological disc changes at axial loaded MRI in patients with low back pain. Eur Spine J 23(10):2075–2082. https://doi.org/10.1007/s00586-014-3408-6

    Article  PubMed  Google Scholar 

  9. Suthar P, Patel R, Mehta C, Patel N (2015) MRI evaluation of lumbar disc degenerative disease. J Clin Diagn Res JCDR. 9(4):TC04. https://doi.org/10.7860/JCDR/2015/11927.5761

    Article  PubMed  Google Scholar 

  10. Steffens D, Hancock MJ, Maher CG et al (2014) Does magnetic resonance imaging predict future low back pain? A systematic review. Eur J Pain 18(6):755–765. https://doi.org/10.1002/j.1532-2149.2013.00427.x

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Liu H, Li Z et al (2015) Low back pain associated with lumbar disc herniation: role of moderately degenerative disc and annulus fibrous tears. Int J Clin Exp Med 8(2):1634–1644

    PubMed  PubMed Central  Google Scholar 

  12. Suri P, Boyko EJ, Goldberg J et al (2014) Longitudinal associations between incident lumbar spine MRI findings and chronic low back pain or radicular symptoms: retrospective analysis of data from the longitudinal assessment of imaging and disability of the back (LAIDBACK). BMC Musculoskelet Disord 15:152. https://doi.org/10.1186/1471-2474-15-152

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chou R, Qaseem A, Owens DK et al (2011) Clinical Guidelines Committee of the American College of Physicians. Diagnostic imaging for low back pain: advice for high-value health care from the American College of Physicians [published correction appears in Ann Intern Med 2012. Jan 3;156(1 Pt 1):71]. Ann Intern Med 154(3):181–189. https://doi.org/10.7326/0003-4819-154-3-201102010-00008

    Article  PubMed  Google Scholar 

  14. Foster NE, Anema JR, Cherkin D et al (2018) Lancet Low Back Pain Series Working Group. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet 391(10137):2368–2383. https://doi.org/10.1016/S0140-6736(18)30489-6

    Article  PubMed  Google Scholar 

  15. Kreiner DS, Matz P, Bono CM et al (2020) Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of low back pain. Spine J 20(7):998–1024. https://doi.org/10.1016/j.spinee.2020.04.006

    Article  PubMed  Google Scholar 

  16. Oliveira CB, Maher CG, Pinto RZ et al (2018) Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J 27(11):2791–2803. https://doi.org/10.1007/s00586-018-5673-2

    Article  PubMed  Google Scholar 

  17. Downie A, Hancock M, Jenkins H et al (2020) How common is imaging for low back pain in primary and emergency care? systematic review and meta-analysis of over 4 million imaging requests across 21 years. Br J Sports Med 54(11):642–651. https://doi.org/10.1136/bjsports-2018-100087

    Article  PubMed  Google Scholar 

  18. Taylor S, Bishop A (2020) Patient and public beliefs about the role of imaging in the management of non-specific low back pain: a scoping review. Physiotherapy 107:224–233. https://doi.org/10.1016/j.physio.2019.08.014

    Article  PubMed  Google Scholar 

  19. Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK (2014) Lumbar disc nomenclature: version 2.0: Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J 14(11):2525–2545. https://doi.org/10.1016/j.spinee.2014.04.022

    Article  PubMed  Google Scholar 

  20. Bajpai J, Saini S, Singh R (2013) Clinical correlation of magnetic resonance imaging with symptom complex in prolapsed intervertebral disc disease: a cross-sectional double blind analysis. J Craniovertebr Junction Spine 4(1):16–20. https://doi.org/10.4103/0974-8237.121619

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiarotto A, Maxwell LJ, Ostelo RW et al (2019) Measurement properties of visual analogue scale, numeric rating scale, and pain severity subscale of the brief pain inventory in patients with low back pain: a systematic review. J Pain 20(3):245–263. https://doi.org/10.1016/j.jpain.2018.07.009

    Article  PubMed  Google Scholar 

  22. Cabak A, Wasilewski L, Zdrodowska A et al (2011) Pain control in patients with chronic back pain syndrome. Ortop Traumatol Rehabil 13(4):361–368. https://doi.org/10.5604/15093492.955722

    Article  PubMed  Google Scholar 

  23. Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine (Phila Pa 1976) 25(22):2940–2952. https://doi.org/10.1097/00007632-200011150-00017

    Article  CAS  PubMed  Google Scholar 

  24. Stratford PW, Binkley JM, Riddle DL (2000) Development and initial validation of the back pain functional scale. Spine (Phila Pa 1976) 25(16):2095–2102. https://doi.org/10.1097/00007632-200008150-00015

    Article  CAS  PubMed  Google Scholar 

  25. Ekedahl H, Jönsson B, Frobell RB (2012) Fingertip-to-floor test and straight leg raising test: validity, responsiveness, and predictive value in patients with acute/subacute low back pain. Arch Phys Med Rehabil 93(12):2210–2215. https://doi.org/10.1016/j.apmr.2012.04.020

    Article  PubMed  Google Scholar 

  26. Splendiani A, Bruno F, Marsecano C et al (2019) Modic I changes size increase from supine to standing MRI correlates with increase in pain intensity in standing position: uncovering the “biomechanical stress” and “active discopathy” theories in low back pain. Eur Spine J 28(5):983–992. https://doi.org/10.1007/s00586-019-05974-7

    Article  PubMed  Google Scholar 

  27. Nguyen C, Jousse M, Poiraudeau S et al (2017) Intervertebral disc and vertebral endplate subchondral changes associated with Modic 1 changes of the lumbar spine: a cross-sectional study. BMC Musculoskelet Disord. 18(1):34. https://doi.org/10.1186/s12891-017-1407-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berg AJ, Ahmadje U, Jayanna HH et al (2020) The prevalence of lumbar disc degeneration in symptomatic younger patients: a study of MRI scans. J Clin Orthop Trauma 11(5):932–936. https://doi.org/10.1016/j.jcot.2020.07.021

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen L, Perera RS, Radojcic MR et al (2021) Association of lumbar spine radiographic changes with severity of back pain-related disability among middle-aged, community-dwelling women. JAMA Netw Open. 4(5):e2110715. https://doi.org/10.1001/jamanetworkopen.2021.10715

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bento TPF, Genebra CVDS, Maciel NM et al (2020) Low back pain and some associated factors: is there any difference between genders? Braz J Phys Ther 24(1):79–87. https://doi.org/10.1016/j.bjpt.2019.01.012

    Article  PubMed  Google Scholar 

  31. Citko A, Górski S, Marcinowicz L et al (2017) Analysis of risk factors of recurring non-specific low back pain with particular emphasis on “new” predictive factors. Family Med Primary Care Rev 19(3):201–208. https://doi.org/10.5114/fmpcr.2017.69275

    Article  Google Scholar 

  32. Shiri R, Falah-Hassani K, Heliövaara M et al (2019) Risk factors for low back pain: a population-based longitudinal study. Arthritis Care Res (Hoboken) 71(2):290–299. https://doi.org/10.1002/acr.23710

    Article  PubMed  Google Scholar 

  33. Han TS, Schouten JS, Lean ME et al (1997) The prevalence of low back pain and associations with body fatness, fat distribution and height. Int J Obes Relat Metab Disord 21(7):600–607. https://doi.org/10.1038/sj.ijo.0800448

    Article  CAS  PubMed  Google Scholar 

  34. Samartzis D, Karppinen J, Chan D et al (2012) The association of lumbar intervertebral disc degeneration on magnetic resonance imaging with body mass index in overweight and obese adults: a population-based study. Arthritis Rheum 64(5):1488–1496. https://doi.org/10.1002/art.33462

    Article  PubMed  Google Scholar 

  35. Takatalo J, Karppinen J, Taimela S et al (2013) Association of abdominal obesity with lumbar disc degeneration—a magnetic resonance imaging study. PLoS ONE 8(2):e56244. https://doi.org/10.1371/journal.pone.0056244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zou J, Yang H, Miyazaki M et al (2008) Missed lumbar disc herniations diagnosed with kinetic magnetic resonance imaging. Spine (Phila Pa 1976) 33(5):E140–E144. https://doi.org/10.1097/BRS.0b013e3181657f7e

    Article  PubMed  Google Scholar 

  37. O’Sullivan PB, Caneiro JP, O’Sullivan K et al (2020) Back to basics: 10 facts every person should know about back pain. Br J Sports Med 54(12):698–699. https://doi.org/10.1136/bjsports-2019-101611

    Article  PubMed  Google Scholar 

  38. Baker MA, MacKay S (2021) Please be upstanding—a narrative review of evidence comparing upright to supine lumbar spine MRI. Radiography (Lond) 27(2):721–726. https://doi.org/10.1016/j.radi.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  39. Splendiani A, Perri M, Grattacaso G et al (2016) Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med 121(1):38–44. https://doi.org/10.1007/s11547-015-0570-9

    Article  PubMed  Google Scholar 

  40. Tarantino U, Fanucci E, Iundusi R et al (2013) Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 14(1):15e22. https://doi.org/10.1007/s10195-012-0213-z

    Article  Google Scholar 

  41. Ahn T, Lee S, Choi G et al (2009) Effect of intervertebral disk degeneration on spinal stenosis during magnetic resonance imaging with axial loading. Neurol Med -Chir 49(6):242e7. https://doi.org/10.2176/nmc.49.242

    Article  Google Scholar 

  42. Maf JN, McCarthy EP, Davis RB et al (2013) Worsening trends in the management and treatment of back pain. JAMA Intern Med 173:1573–1581. https://doi.org/10.1001/jamainternmed.2013.8992

    Article  CAS  Google Scholar 

  43. Rajasekaran S, Dilip Chand Raja S, Pushpa BT et al (2021) The catastrophization effects of an MRI report on the patient and surgeon and the benefits of “clinical reporting”: results from an RCT and blinded trials. Eur Spine J. 30(7):2069–2081. https://doi.org/10.1007/s00586-021-06809-0

    Article  CAS  PubMed  Google Scholar 

  44. Chiu CC, Chuang TY, Chang KH et al (2015) The probability of spontaneous regression of lumbar herniated disc: a systematic review. Clin Rehabil 29(2):184–195. https://doi.org/10.1177/0269215514540919

    Article  PubMed  Google Scholar 

  45. Macki M, Hernandez-Hermann M, Bydon M et al (2014) Spontaneous regression of sequestrated lumbar disc herniations: literature review. Clin Neurol Neurosurg 120:136–141. https://doi.org/10.1016/j.clineuro.2014.02.013

    Article  PubMed  Google Scholar 

  46. Krishnan P (2017) Spontaneous complete absorption of a large prolapsed lumbar intervertebral disc with extrusion and cranial migration. J Neurosci Rural Pract 8(2):307–309. https://doi.org/10.4103/0976-3147.203839

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhong M, Liu JT, Jiang H et al (2017) Incidence of spontaneous resorption of lumbar disc herniation: a meta-analysis. Pain Physician 20(1):E45–E52

    PubMed  Google Scholar 

Download references

Funding

The authors report no funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: KZ, RL; methodology: KZ, RL; formal analysis and investigation: KZ; original draft preparation: KZ; writing—review and editing: RL; funding acquisition: –; resources: KZ; supervision: RL.

Corresponding author

Correspondence to Kamil Zaworski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Bioethical Committee of Medical University of Lublin (KE-0254/14/2014). The study was registered in the United States Clinical Trials Database (NCT03733964).

Informed consent

All participants in the study signed written consent to participate in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaworski, K., Latosiewicz, R. Are there any correlations among the number of discopathy levels and pain intensity or disability in patients with symptomatic low back pain?. Arch Orthop Trauma Surg 143, 6077–6085 (2023). https://doi.org/10.1007/s00402-023-04881-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04881-3

Keywords

Navigation