Skip to main content

Advertisement

Log in

Elevated hip adduction angles and abduction moments in the gait of adolescents with recurrent patellar dislocation

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Impaired hip kinematics and kinetics may incite patellar instability. This study tested the hypothesis that hip adduction and internal rotation angles during gait are higher in adolescents with recurrent patellar dislocations compared to healthy controls.

Material and methods

Case–control study. Eighty-eight knees (67 patients) with recurrent patellar dislocation (mean age 14.8 years ± 2.8 SD) were compared to 54 healthy knees (27 individuals, 14.9 years ± 2.4 SD). Peak hip, knee and pelvis kinematics and kinetics were captured using 3D-gait analysis (VICON, 12 cameras, 200 Hz, Plug-in-Gait, two force plates) and compared between the two groups. One cycle (100%) consisted of 51 data points. The mean of six trials was computed.

Results

Peak hip adduction angles and abduction moments were significantly higher in patients with recurrent patellar dislocation compared to the control group (p < 0.001 and 0.002, respectively). Peak internal hip rotation did not differ significantly.

Conclusion

Elevated hip adduction angles and higher hip abduction moments in gait of adolescents with recurrent patellar dislocation may indicate an impaired function of hip abductors that contributes to patellar instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Imhoff FB, Cotic M, Dyrna FGE, Cote M, Diermeier T, Achtnich A, Imhoff AB, Beitzel K (2021) Dynamic Q-angle is increased in patients with chronic patellofemoral instability and correlates positively with femoral torsion. Knee Surg Sports Traumatol Arthrosc 29(4):1224–1231. https://doi.org/10.1007/s00167-020-06163-6

    Article  PubMed  Google Scholar 

  2. Zeitoune G, Leporace G, Batista LA, Metsavaht L, Lucareli PRG, Nadal J (2020) Do hip strength, flexibility and running biomechanics predict dynamic valgus in female recreational runners? Gait Posture 79:217–223. https://doi.org/10.1016/j.gaitpost.2020.05.006

    Article  PubMed  Google Scholar 

  3. Camathias C, Ammann E, Meier RL, Rutz E, Vavken P, Studer K (2020) Recurrent patellar dislocations in adolescents result in decreased knee flexion during the entire gait cycle. Knee Surg Sports Traumatol Arthrosc 28(7):2053–2066. https://doi.org/10.1007/s00167-020-05911-y

    Article  PubMed  Google Scholar 

  4. Amis AA, Oguz C, Bull AMJ, Senavongse W, Dejour D (2008) The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Jt Surg Br 90:864–869. https://doi.org/10.1302/0301-620X.90B7.20447

    Article  CAS  Google Scholar 

  5. Kölle T, Alt W, Wagner D (2020) Effects of a 12-week home exercise therapy program on pain and neuromuscular activity in patients with patellofemoral pain syndrome. Arch Orthop Trauma Surg 140(12):1985–1992. https://doi.org/10.1007/s00402-020-03543-y

    Article  PubMed  Google Scholar 

  6. Kölle T, Alt W, Wagner D (2020) Immediate effects of an elastic patellar brace on pain, neuromuscular activity and knee kinematics in subjects with patellofemoral pain. Arch Orthop Trauma Surg 140(7):905–912. https://doi.org/10.1007/s00402-020-03378-7

    Article  PubMed  Google Scholar 

  7. Nadeau S, Gravel D, Hcbertb LJ, Arsenault AB, Lepage Y (1997) Gait study of patients with patellofemoral pain syndrome. Gait Posture 5(1):21–27. https://doi.org/10.1016/S0966-6362(96)01078-8

    Article  Google Scholar 

  8. Arazpour M, Bahramian F, Abutorabi A, SeyedNourbakhsh T, Alidousti A, Aslani H, Beheshti S (2016) The effect of patellofemoral pain syndrome on gait parameters: a literature review. Arch Bone Jt Surg 4:298–306. https://doi.org/10.22038/abjs.2016.7541

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barton CJ, Levinger P, Menz HB, Webster KE (2009) Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait Posture 30:405–416. https://doi.org/10.1016/j.gaitpost.2009.07.109

    Article  PubMed  Google Scholar 

  10. Bolgla LA, Malone TR, Umberger BR, Uhl TL (2008) Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther 38:12–18. https://doi.org/10.2519/jospt.2008.2462

    Article  PubMed  Google Scholar 

  11. Souza RB, Powers CM (2009) Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther 39:12–19. https://doi.org/10.2519/jospt.2009.2885

    Article  PubMed  Google Scholar 

  12. Meira EP, Brumitt J (2011) Influence of the hip on patients with patellofemoral pain syndrome: a systematic review. Sports Health 3:455–465. https://doi.org/10.1177/1941738111415006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Powers CM (2010) The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther 40:42–51. https://doi.org/10.2519/jospt.2010.3337

    Article  PubMed  Google Scholar 

  14. Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C (2012) Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech 27:366–371. https://doi.org/10.1016/j.clinbiomech.2011.10.005

    Article  Google Scholar 

  15. Herbst KA, Barber Foss KD, Fader L, Hewett TE, Witvrouw E, Stanfield D, Myer GD (2015) Hip strength is greater in athletes who subsequently develop patellofemoral pain. Am J Sports Med 43(11):2747–2752. https://doi.org/10.1177/0363546515599628

    Article  PubMed  PubMed Central  Google Scholar 

  16. Haghighat F, Ebrahimi S, Rezaie M, Shafiee E, Shokouhyan SM, Motealleh A, Parnianpour M (2021) Trunk, pelvis, and knee kinematics during running in females with and without patellofemoral pain. Gait Posture 89:80–85. https://doi.org/10.1016/j.gaitpost.2021.06.023

    Article  PubMed  Google Scholar 

  17. Stefanik JJ, Felson DT, Rabasa G, Guermazi A, Roemer F, Lynch J, Lewis CE, Torner J, Lewis CL (2021) Relation of hip abductor strength to worsening cartilage damage in the knee: the multicenter osteoarthritis study. Osteoarthr Cartil 29:399. https://doi.org/10.1016/j.joca.2021.02.517

    Article  Google Scholar 

  18. Tateuchi H, Akiyama H, Goto K, So K, Kuroda Y, Ichihashi N (2020) Gait kinematics of the hip, pelvis, and trunk associated with external hip adduction moment in patients with secondary hip osteoarthritis: toward determination of the key point in gait modification. BMC Musculoskelet Disord 21(1):8. https://doi.org/10.1186/s12891-019-3022-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dunn DM, Notley B (1952) Anteversion of the neck of the femur; a method of measurement. J Bone Joint Surg Br 34-B(2):181–186. https://doi.org/10.1302/0301-620X.34B2.181

    Article  CAS  PubMed  Google Scholar 

  20. Davis RB (1988) Clinical gait analysis. IEEE Eng Med Biol Mag 7:35–40. https://doi.org/10.1109/51.7933

    Article  CAS  PubMed  Google Scholar 

  21. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35(4):543–548. https://doi.org/10.1016/s0021-9290(01)00222-6

    Article  PubMed  Google Scholar 

  22. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8:383–392. https://doi.org/10.1002/jor.1100080310

    Article  CAS  PubMed  Google Scholar 

  23. Perry J, Burnfield J (1992) Gait analysis: normal and pathological function. SLACK Incorporated, New Jersey

    Google Scholar 

  24. Visscher R, Hasler N, Freslier M, Singh NB, Taylor WR, Brunner R, Rutz E (2021) Long-term follow-up after multilevel surgery in cerebral palsy. Arch Orthop Trauma Surg 142(9):2131–2138. https://doi.org/10.1007/s00402-021-03797-0

    Article  PubMed  Google Scholar 

  25. Ammann E, Meier RL, Rutz E, Vavken P, Studer K, Camathias C (2020) Trochleoplasty improves knee flexion angles and quadriceps function during gait only if performed bilaterally. Knee Surg Sports Traumatol Arthrosc 28(7):2067–2076. https://doi.org/10.1007/s00167-020-05906-9

    Article  PubMed  Google Scholar 

  26. Stief F, Böhm H, Michel K, Schwirtz A, Döderlein L (2013) Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols. J Appl Biomech 29(1):105–111. https://doi.org/10.1123/jab.29.1.105

    Article  PubMed  Google Scholar 

  27. Chotel F, Bérard J, Raux S (2014) Patellar instability in children and adolescents. Orthop Traumatol Surg Res 100(1 Suppl):125–137. https://doi.org/10.1016/j.otsr.2013.06.014

    Article  Google Scholar 

  28. Dewan V, Webb MSL, Prakash D, Malik A, Gella S, Kipps C (2019) When does the patella dislocate? A systematic review of biomechanical & kinematic studies. J Orthop 16(20):70–77. https://doi.org/10.1016/j.jor.2019.11.018

    Article  Google Scholar 

  29. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG (2003) Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 33:677–685. https://doi.org/10.2519/jospt.2003.33.11.677

    Article  PubMed  Google Scholar 

  30. Diederichs G, Köhlitz T, Kornaropoulos E, Heller MO, Vollnberg B, Scheffler S (2013) Magnetic resonance imaging analysis of rotational alignment in patients with patellar dislocations. Am J Sports Med 41(1):51–57. https://doi.org/10.1177/0363546512464691

    Article  PubMed  Google Scholar 

  31. Tian G, Yang G, Zuo L, Li F, Wang F (2020) Femoral derotation osteotomy for recurrent patellar dislocation. Arch Orthop Trauma Surg 140(12):2077–2084. https://doi.org/10.1007/s00402-020-03598-x

    Article  PubMed  Google Scholar 

  32. Dierks TA, Manal KT, Hamill J, Davis IS (2008) Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther 38:448–456. https://doi.org/10.2519/jospt.2008.2490

    Article  PubMed  Google Scholar 

  33. Reiman MP, Bolgla LA, Lorenz D (2009) Hip function’s influence on knee dysfunction: a proximal link to a distal problem. J Sports Rehabil 18:33–46. https://doi.org/10.1123/jsr.18.1.33

    Article  Google Scholar 

  34. Balcarek P, Oberthür S, Hopfensitz S, Frosch S, Walde TA, Wachowski MM, Schüttrumpf JP, Stürmer KM (2014) Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc 22(10):2308–2314. https://doi.org/10.1007/s00167-013-2650-5

    Article  PubMed  Google Scholar 

  35. Ling DI, Brady JM, Arendt E, Tompkins M, Agel J, Askenberger M, Balcarek P, Parikh S, Shubin Stein BE (2021) Development of a multivariable model based on individual risk factors for recurrent lateral patellar dislocation. J Bone Jt Surg Am. 103(7):586–592. https://doi.org/10.2106/JBJS.20.00020

    Article  Google Scholar 

  36. Butler RJ, Barrios JA, Royer T, Davis IS (2011) Frontal-plane gait mechanics in people with medial knee osteoarthritis are different from those in people with lateral knee osteoarthritis. Phys Ther 91(8):1235–1243. https://doi.org/10.2522/ptj.20100324

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rutherford DJ, Hubley-Kozey C, Stanish W (2014) Hip abductor function in individuals with medial knee osteoarthritis: implications for medial compartment loading during gait. Clin Biomech 29:545–550. https://doi.org/10.1016/j.clinbiomech.2014.03.009

    Article  Google Scholar 

  38. Chang A, Hayes K, Dunlop D, Song J, Hurwitz D, Cahue S, Sharma L (2005) Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Arthritis Rheum 52:3515–3519. https://doi.org/10.1002/art.21406

    Article  PubMed  Google Scholar 

  39. Dunphy C, Casey S, Lomond A, Rutherford D (2016) Contralateral pelvic drop during gait increases knee adduction moments of asymptomatic individuals. Hum Mov Sci 49:27–35. https://doi.org/10.1016/j.humov.2016.05.008

    Article  PubMed  Google Scholar 

  40. Boswell MA, Uhlrich SD, Kidziński Ł, Thomas K, Kolesar JA, Gold GE, Beaupre GS, Delp SL (2021) A neural network to predict the knee adduction moment in patients with osteoarthritis using anatomical landmarks obtainable from 2D video analysis. Osteoarthr Cartil 29(3):346–356. https://doi.org/10.1016/j.joca.2020.12.017

    Article  CAS  Google Scholar 

  41. Li S, Ng WH, Abujaber S, Shaharudin S (2021) Effects of resistance training on gait velocity and knee adduction moment in knee osteoarthritis patients: a systematic review and meta-analysis. Sci Rep 11(1):16104. https://doi.org/10.1038/s41598-021-95426-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruescas Nicolau AV, De Rosario H, Basso Della-Vedova F, Parrilla Bernabé E, Juan MC, López-Pascual J (2022) Accuracy of a 3D temporal scanning system for gait analysis: comparative with a marker-based photogrammetry system. Gait Posture 97:28–34. https://doi.org/10.1016/j.gaitpost.2022.07.001

    Article  PubMed  Google Scholar 

  43. Van der Kruk E, Reijne MM (2018) Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci 18(6):806–819. https://doi.org/10.1080/17461391.2018.1463397

    Article  PubMed  Google Scholar 

  44. Colyer SL, Evans M, Cosker DP, Salo AIT (2018) A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med Open 4(1):24. https://doi.org/10.1186/s40798-018-0139-y

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huntington LS, Webster KE, Devitt BM, Feller JA (2021) Risk assessment and management of primary patellar dislocation is complex and multifactorial: a survey of Australian knee surgeons. J ISAKOS 6(6):333–338. https://doi.org/10.1136/jisakos-2020-000609

    Article  PubMed  Google Scholar 

  46. Smith TO, Donell ST, Chester R, Clark A, Stephenson R (2011) What activities do patients with patellar instability perceive makes their patella unstable? Knee 18(5):333–339. https://doi.org/10.1016/j.knee.2010.07.003

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Ammann.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to declare.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Ethical approval was obtained from the Ethics Committee Basel: No 2013/112.

Informed consent

Informed consent was obtained from all individual participants included in the study. Patients signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammann, E., Meier, R.L., Rutz, E. et al. Elevated hip adduction angles and abduction moments in the gait of adolescents with recurrent patellar dislocation. Arch Orthop Trauma Surg 143, 4031–4041 (2023). https://doi.org/10.1007/s00402-022-04703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04703-y

Keywords

Navigation