Skip to main content

Advertisement

Log in

Immunofluorescence analysis of sensory nerve endings in the periarticular tissue of the human elbow joint

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

To investigate the dynamic aspects of elbow stability, we aimed to analyze sensory nerve endings in the ligaments and the capsule of elbow joints.

Materials and methods

The capsule with its anterior (AJC) and posterior (PJC) parts, the radial collateral ligament (RCL), the annular ligament (AL), and the ulnar collateral ligament with its posterior (PUCL), transverse (TUCL) and anterior parts (AUCL) were dissected from eleven human cadaver elbow joints. Sensory nerve endings were analyzed in two levels per specimen as total cell amount/ cm2 after immunofluorescence staining with low-affinity neurotrophin receptor p75, protein gene product 9.5, S-100 protein and 4′,6-Diamidin-2-phenylindol, Carbonic anhydrase II and choline acetyltransferase on an Apotome microscope according to Freeman and Wyke’s classification.

Results

Free nerve endings were the predominant mechanoreceptor in all seven structures followed by Ruffini, unclassifiable, Golgi-like, and Pacini corpuscles (p ≤ 0.00001, respectively). Free nerve endings were observed significant more often in the AJC than in the RCL (p < 0.00002). A higher density of Ruffini endings than Golgi-like endings was observed in the PJC (p = 0.004). The RCL contained significant more Ruffini endings than Pacini corpuscles (p = 0.004). Carbonic anhydrase II was significantly more frequently positively immunoreactive than choline acetyltransferase in all sensory nerve endings (p < 0.05). Sensory nerve endings were significant more often epifascicular distributed in all structures (p < 0.006, respectively) except for the AJC, which had a pronounced equal distribution (p < 0.00005).

Conclusion

The high density of free nerve endings in the joint capsule indicates that it has pronounced nociceptive functions. Joint position sense is mainly detected by the RCL, AUCL, PUCL, and the PJC. Proprioceptive control of the elbow joint is mainly monitored by the joint capsule and the UCL, respectively. However, the extreme range of motion is primarily controlled by the RCL mediated by Golgi-like endings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Soubeyrand M, Assabah B, Bégin M et al (2017) Pronation and supination of the hand: Anatomy and biomechanics. Hand Surg Rehabil 36:2–11. https://doi.org/10.1016/j.hansur.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Juul-Kristensen B, Lund H, Hansen K et al (2008) Poorer elbow proprioception in patients with lateral epicondylitis than in healthy controls: A cross-sectional study. J Shoulder Elb Surg 17:72–81. https://doi.org/10.1016/j.jse.2007.07.003

    Article  Google Scholar 

  3. Siqueira GSL, Amaral MVG, Schiefer M et al (2017) Proprioceptive deficit after total elbow arthroplasty: an observational study. J Shoulder Elb Surg 26:2017–2022. https://doi.org/10.1016/j.jse.2017.07.003

    Article  Google Scholar 

  4. Lubiatowski P, Olczak I, Lisiewicz E et al (2014) Elbow joint position sense after total elbow arthroplasty. J Shoulder Elb Surg 23:693–700. https://doi.org/10.1016/j.jse.2014.01.016

    Article  Google Scholar 

  5. Ettinger LR, Shapiro M, Karduna A (2017) Subacromial anesthetics increase proprioceptive deficit in the shoulder and elbow in patients with subacromial impingement syndrome. Clin Med Insights Arthritis Musculoskelet Disord 10:1–7. https://doi.org/10.1177/1179544117713196

    Article  Google Scholar 

  6. Bryce CD, Armstrong AD (2008) Anatomy and Bbiomechanics of the elbow. Orthop Clin North Am 39:141–154. https://doi.org/10.1016/j.ocl.2007.12.001

    Article  PubMed  Google Scholar 

  7. Li K, Yi U, Su W, Jen N, Fu H, Wei H, Pickett KA (2015) Kinesthetic deficit in children with developmental coordination disorder. Res Dev Disabil 38:125–133. https://doi.org/10.1016/j.ridd.2014.12.013

    Article  PubMed  Google Scholar 

  8. Tunik E, Poizner H, Levin MF et al (2003) Arm-trunk coordination in the absence of proprioception. Exp Brain Res 153:343–355. https://doi.org/10.1007/s00221-003-1576-4

    Article  CAS  PubMed  Google Scholar 

  9. Sherrington CS (1906) The integrative action of the nervous system. Archibald Constable & Co. Ltd. London. https://doi.org/10.1017/CBO9781107415324.004

  10. Proske U (2005) What is the role of muscle receptors in proprioception? Muscle Nerve 31:780–787. https://doi.org/10.1002/mus.20330

    Article  CAS  PubMed  Google Scholar 

  11. Crago PE (2019) Neuromodulation by combined sensory and motor stimulation in the peripheral nerve: tendon organ afferent activity. J Neural Eng. https://doi.org/10.1088/1741-2552/aaeaa9

    Article  PubMed  Google Scholar 

  12. Rein S, Semisch M, Garcia-Elias M et al (2015) Immunohistochemical mapping of sensory nerve endings in the human triangular fibrocartilage complex. Clin Orthop Relat Res 473:3245–3253. https://doi.org/10.1007/s11999-015-4357-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rein S, Manthey S, Zwipp H, Witt A (2014) Distribution of sensory nerve endings around the human sinus tarsi: A cadaver study. J Anat 224:499–508. https://doi.org/10.1111/joa.12157

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wyke B (1967) The neurology of joints. Ann R Coll Surg Engl 41:25–50

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cobo R, García-Piqueras J, Cobo J, Vega JA (2021) The human cutaneous sensory corpuscles: An update. J Clin Med 10:227. https://doi.org/10.3390/jcm10020227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kholinne E, Lee HJ, Lee YM et al (2018) Mechanoreceptor profile of the lateral collateral ligament complex in the human elbow. Asia-Pacific J Sport Med Arthrosc Rehabil Technol 14:17–21. https://doi.org/10.1016/j.asmart.2018.04.001

    Article  Google Scholar 

  17. Kholinne E, Lee HJ, Kim GY et al (2018) Mechanoreceptors distribution in the human medial collateral ligament of the elbow. Orthop Traumatol Surg Res 104:251–255. https://doi.org/10.1016/j.otsr.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Petrie S, Collins G, Solomonow M et al (1998) Mechanoreceptors in the human elbow ligaments. J Hand Surg Am 23:512–518

    Article  CAS  PubMed  Google Scholar 

  19. Kholinne E, Lee H, Deslivia M et al (2019) Neuroanatomical distribution of sensory receptors in the human elbow joint capsule. Shoulder Elb 11:300–304

    Article  Google Scholar 

  20. Koch B, Kurriger G, Brand RA (1995) Characterisation of the neurosensory elements of the feline cranial cruciate ligament. J Anat 187:353–353

    PubMed  PubMed Central  Google Scholar 

  21. Gómez-Barrena E (1999) Gold chloride technique to study articular innervation. A protocol validated through computer-assisted colorimetry. Histol Histopathol 14:69–79

    PubMed  Google Scholar 

  22. Soule JD (1962) Direct staining of reticular fibers with gold chloride. Biotech Histochem 37:31–34. https://doi.org/10.3109/10520296209114566

    Article  CAS  Google Scholar 

  23. Raunest J, Sager M, Bürgener E (1998) Proprioception of the cruciate ligaments: Receptor mapping in an animal model. Arch Orthop Trauma Surg 118:159–163. https://doi.org/10.1007/s004020050338

    Article  CAS  PubMed  Google Scholar 

  24. Albuerne M, De Lavallina J, Esteban I et al (2000) Development of Meissner-like and Pacinian sensory corpuscles in the mouse demonstrated with specific markers for corpuscular constituents. Anat Rec 258:235–242. https://doi.org/10.1002/(SICI)1097-0185(20000301)258:3%3c235::AID-AR2%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  25. Hagert E, Ljung BO, Forsgren S (2004) General innervation pattern and sensory corpuscles in the scapholunate interosseous ligament. Cells Tissues Organs 177:47–54. https://doi.org/10.1159/000078427

    Article  CAS  PubMed  Google Scholar 

  26. Pederiva F, Aras Lopez R, Martinez L, Tovar JA (2008) Abnormal development of tracheal innervation in rats with experimental diaphragmatic hernia. Pediatr Surg Int 24:1341–1346. https://doi.org/10.1007/s00383-008-2261-2

    Article  PubMed  Google Scholar 

  27. Rein S, Hagert E, Hanisch U et al (2013) Immunohistochemical analysis of sensory nerve endings in ankle ligaments: A cadaver study. Cells Tissues Organs 197:64–76. https://doi.org/10.1159/000339877

    Article  PubMed  Google Scholar 

  28. Tingaker BK, Ekman-Ordeberg G, Forsgren S (2006) Presence of sensory nerve corpuscles in the human corpus and cervix uteri during pregnancy and labor as revealed by immunohistochemistry. Reprod Biol Endocrinol 4:1–8. https://doi.org/10.1186/1477-7827-4-45

    Article  CAS  Google Scholar 

  29. Lee J, Ladd A, Hagert E (2012) Immunofluorescent triple-staining technique to identify sensory nerve endings in human thumb ligaments. Cells Tissues Organs 195:456–464. https://doi.org/10.1159/000327725

    Article  CAS  PubMed  Google Scholar 

  30. Rein S, Esplugas M, Garcia-Elias M et al (2020) Immunofluorescence analysis of sensory nerve endings in the interosseous membrane of the forearm. J Anat 236:906–915. https://doi.org/10.1111/joa.13138

    Article  CAS  PubMed  Google Scholar 

  31. Robertson D, Savage K, Reis-Filho JS, Isacke CM (2008) Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol 9:1–10. https://doi.org/10.1186/1471-2121-9-13

    Article  CAS  Google Scholar 

  32. Bataille F, Troppmann S, Klebl F et al (2006) Multiparameter immunofluorescence on paraffin-embedded tissue sections. Appl Immunohistochem Mol Morphol 14:225–228. https://doi.org/10.1097/01.pai.0000162009.31931.10

    Article  PubMed  Google Scholar 

  33. Gesslbauer B, Hruby LA, Roche AD et al (2017) Axonal components of nerves innervating the human arm. Ann Neurol 82:396–408. https://doi.org/10.1002/ana.25018

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Du J, Qing L et al (2021) Identification of sensory and motor nerve fascicles by immunofluorescence staining after peripheral nerve injury. J Transl Med 19:1–12. https://doi.org/10.1186/s12967-021-02871-w

    Article  CAS  Google Scholar 

  35. Currier SF, Mautner HG (1974) On the mechanism of action of choline acetyltransferase. Proc Nat Acad Sci USA 71:3355–3358. https://doi.org/10.1016/B978-008055232-3.60522-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellier JP, Kimura H (2011) Peripheral type of choline acetyltransferase: Biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 42:225–235. https://doi.org/10.1016/j.jchemneu.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  37. Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401. https://doi.org/10.1146/annurev.bi.64.070195.002111

    Article  CAS  PubMed  Google Scholar 

  38. Tashian RE (1992) Genetics of the mammalian carbonic anhydrases. Adv Genet 30:321–356

    Article  CAS  PubMed  Google Scholar 

  39. Carson K, Terzis JK (1985) Carbonic anhydrase histochemistry. A potential dignostic method for peripheral nerve repair. Clin Plast Surg 12:227–232

    Article  CAS  PubMed  Google Scholar 

  40. Riley DA, Lang DH (1984) Carbonic anhydrase activity of human peripheral nerves: A possible histochemical aid to nerve repair. J Hand Surg Am 9:112–120. https://doi.org/10.1016/S0363-5023(84)80198-7

    Article  Google Scholar 

  41. Hewitt SM, Baskin DG, Frevert CW et al (2014) Controls for Immunohistochemistry: The Histochemical Society’s Standards of Practice for Validation of Immunohistochemical Assays. J Histochem Cytochem 62:693–697. https://doi.org/10.1369/0022155414545224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Denti M, Monteleone M, Berardi A, Panni A (1994) Anterior cruciate ligament mechanoreceptors. Histologic studies on lesions and reconstruction. Clin Orthop Relat Res 308:29–32

    Article  Google Scholar 

  43. Krenn V, Morawietz L, Burmester GR et al (2006) Synovitis score: Discrimination between chronic low-grade and high-grade synovitis. Histopathology 49:358–364. https://doi.org/10.1111/j.1365-2559.2006.02508.x

    Article  CAS  PubMed  Google Scholar 

  44. Freeman MAR, Wyke B (1967) The innervation of the ankle joint. An anatomical and histological study in the cat. Acta Anat (Basel) 68:321–333. https://doi.org/10.1159/000143037

    Article  CAS  PubMed  Google Scholar 

  45. Hagert E (2008) Wrist ligaments- innervation patterns and ligamento-muscular reflexes. Thesis for doctoral degree. Karolinska Institutet, Stockholm Sweden. https://openarchive.ki.se/xmlui/bitstream/handle/10616/39802/thesis.pdf?sequence=1&isAllowed=y. Retrieved on 17.08.2022

  46. Hagert E, Garcia-Elias M, Forsgren S, Ljung BO (2007) Immunohistochemical analysis of wrist ligament innervation in relation to their structural composition. J Hand Surg Am 32:30–36. https://doi.org/10.1016/j.jhsa.2006.10.005

    Article  PubMed  Google Scholar 

  47. Schultz RA, Miller DC, Kerr CS, Micheli L (1984) Mechanoreceptors in human cruciate ligaments: A histological study. J Bone Joint Surg [Br] 66:1072–1976. https://doi.org/10.2106/00004623-198466070-00014

    Article  CAS  PubMed  Google Scholar 

  48. Takebayashi T, Yamashita T, Sakamoto N et al (2002) Biomechanical characteristics of the lateral ligament of the ankle joint. J Foot Ankle Surg 41:154–157. https://doi.org/10.1016/S1067-2516(02)80064-3

    Article  PubMed  Google Scholar 

  49. Chowdhury R, Matyas JR, Frank CB (1991) The “epiligament” of the rabbit medial collateral ligament: A quantitative morphological study. Connect Tissue Res 27:33–50. https://doi.org/10.3109/03008209109006993

    Article  CAS  PubMed  Google Scholar 

  50. Regan WD, Korinek SL, Morrey BF, An KN (1991) Biomechanical study of ligaments around the elbow joint. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199110000-00023

    Article  PubMed  Google Scholar 

  51. Kimata K, Yasui M, Yokota H et al (2019) Transverse ligament of the elbow joint: an anatomic study of cadavers. J Shoulder Elb Surg 28:2253–2258. https://doi.org/10.1016/j.jse.2019.04.048

    Article  Google Scholar 

  52. Safran MR, Baillargeon D (2005) Soft-tissue stabilizers of the elbow. J Shoulder Elb Surg 14:S179–S185. https://doi.org/10.1016/j.jse.2004.09.032

    Article  Google Scholar 

  53. O’Discroll S, Bell D, Morrey B (1991) Posterolateral rotatory instability of the elbow. J Bone Jt Surg Am 73:440–446

    Article  Google Scholar 

  54. Jensen AR, LaPrade MD, Turner TW et al (2020) The history and evolution of elbow medial ulnar collateral ligament reconstruction: from Tommy John to 2020. Curr Rev Musculoskelet Med 13:349–360. https://doi.org/10.1007/s12178-020-09618-y

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halata Z, Wagner C, Baumann KI (1999) Sensory nerve endings in the anterior cruciate ligament (Lig. cruciatum anterius) of sheep. Anat Rec 254:13–21. https://doi.org/10.1002/(SICI)1097-0185(19990101)254:1%3c13::AID-AR3%3e3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  56. Ring D, Adey L, Zurakowski D, Jupiter JB (2006) Elbow capsulectomy for posttraumatic elbow stiffness. J Hand Surg Am 31:1264–1271. https://doi.org/10.1016/j.jhsa.2006.06.009

    Article  PubMed  Google Scholar 

  57. Petrie S, Collins J, Solomonow M et al (1997) Mechanoreceptors in the palmar wrist ligaments. J Bone Joint Surg [Br] 79:494–496. https://doi.org/10.1302/0301-620X.79B3.7439

    Article  CAS  Google Scholar 

  58. Callaway GH, Field LD, Deng XH et al (1997) Biomechanical evaluation of the medial collateral ligament of the elbow. J Bone Joint Surg [Br] 79:1223–1231. https://doi.org/10.2106/00004623-199708000-00015

    Article  CAS  PubMed  Google Scholar 

  59. Camp CL, Jahandar H, Sinatro AM et al (2018) Quantitative anatomic analysis of the medial ulnar collateral ligament complex of the elbow. Orthop J Sport Med 6:1–9. https://doi.org/10.1177/2325967118762751

    Article  Google Scholar 

  60. Mioton LM, Dumanian GA, De la Garza M, Ko JH (2019) Histologic analysis of sensory and motor axons in branches of the human brachial plexus. Plast Reconstr Surg 144:1359–1368. https://doi.org/10.1097/PRS.0000000000006278

    Article  CAS  PubMed  Google Scholar 

  61. Xianyu M, Zhenggang B, Laijin L (2016) Identification of the sensory and motor fascicles in the peripheral nerve: A historical review and recent progress. Neurol India 64:880–885. https://doi.org/10.4103/0028-3886.190241

    Article  PubMed  Google Scholar 

  62. Grigg P, Hoffman A, Fogarty K (1982) Properties of Golgi-Mazzoni afferents in cat knee joint capsule, as revealed by mechanical studies of isolated joint capsule. J Neurophysiol 47:31–40

    Article  CAS  PubMed  Google Scholar 

  63. Grigg P, Hoffman AH (1982) Properties of Ruffini afferents revealed by stress analysis of isolated sections of cat knee capsule. J Neurophysiol 47:41–54

    Article  CAS  PubMed  Google Scholar 

  64. Moore AR, Fleisig GS, Dugas JR (2019) Ulnar collateral ligament repair. Orthop Clin North Am 50:383–389. https://doi.org/10.1016/j.ocl.2019.03.005

    Article  PubMed  Google Scholar 

  65. Riemann BL, Lephart SM (2002) The sensorimotor system, Part II: The role of proprioception in motor control and functional joint stability. J Athl Train 37:80–84. https://doi.org/10.1016/j.jconhyd.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Riemann BL, Lephart SM (2002) The sensorimotor system, part I: The physiologic basis of functional joint stability. J Athl Train 37:71–79. https://doi.org/10.1016/j.jconhyd.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilps T, Kaufmann RA, Yamakawa S, Fowler JR (2020) Elbow biomechanics: bony and dynamic stabilizers. J Hand Surg Am 45:528–535. https://doi.org/10.1016/j.jhsa.2020.01.016

    Article  PubMed  Google Scholar 

  68. Unal M, Budeyri A, Ercan S et al (2019) Arthroscopic chronic tennis elbow surgery preserves elbow proprioception. Orthop Traumatol Surg Res 105:329–334. https://doi.org/10.1016/j.otsr.2018.10.009

    Article  PubMed  Google Scholar 

  69. Olsen BS, Søjbjerg JO (2003) The treatment of recurrent posterolateral instability of the elbow. J Bone Joint Surg [Br] 85:342–346. https://doi.org/10.1302/0301-620X.85B3.13669

    Article  CAS  Google Scholar 

  70. Savoie FH, O’Brien MJ, Field LD, Gurley DJ (2010) Arthroscopic and open radial ulnohumeral ligament reconstruction for posterolateral rotatory instability of the elbow. Clin Sports Med 29:611–618. https://doi.org/10.1016/j.csm.2010.06.008

    Article  PubMed  Google Scholar 

  71. Cohen MS, Hastings H (1995) Rotatory instability of the elbow: The lateral stabilizers. J Shoulder Elb Surg 4:S10. https://doi.org/10.1016/s1058-2746(95)80049-2

    Article  Google Scholar 

  72. Reichel LM, Milam GS, Sitton SE et al (2013) Elbow lateral collateral ligament injuries. J Hand Surg Am 38:184–201. https://doi.org/10.1016/j.jhsa.2012.10.030

    Article  PubMed  Google Scholar 

  73. Wilhelm A (2000) Die Denervation zur Behandlung der therapieresistenten Epicondylitis humeri lateralis. Oper Orthop Traumatol 12:95–108

    Article  Google Scholar 

  74. Bellato E, Castoldi F, Marmotti A et al (2020) Relationship between the lateral collateral ligament of the elbow and the Kocher approach: A cadaver study. J Hand Surg Am. https://doi.org/10.1016/j.jhsa.2020.09.013

    Article  PubMed  Google Scholar 

  75. Weiss APC, Hastings H (1992) The anatomy of the proximal radioulnar joint. J Shoulder Elb Surg 1:193–199. https://doi.org/10.1016/1058-2746(92)90013-S

    Article  CAS  Google Scholar 

  76. Kim MC, Eckhardt BP, Craig C, Kuhns LR (2004) Ultrasonography of the annular ligament partial tear and recurrent “pulled elbow.” Pediatr Radiol 34:999–1004. https://doi.org/10.1007/s00247-004-1284-7

    Article  PubMed  Google Scholar 

  77. Tan JW, Mu MZ, Liao GJ, Li JM (2008) Pathology of the annular ligament in paediatric Monteggia fractures. Injury 39:451–455. https://doi.org/10.1016/j.injury.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  78. Cheung E, Nathani A, Tashjian R et al (2019) Elbow trauma sequelae: instability, stiffness, non-arthroplasty, and arthroplasty options. Instr Course Lect 68:117–140

    PubMed  Google Scholar 

  79. Wilhelm A (1958) Zur Innervation der Gelenke der oberen Extremität. Z Anat Entwicklungsgesch 120:331–371. https://doi.org/10.1007/BF00525089

    Article  CAS  PubMed  Google Scholar 

  80. Laumonerie P, Tiercelin J, Tibbo ME et al (2020) Sensory innervation of the human elbow joint and surgical considerations. Clin Anat 33:1062–1068. https://doi.org/10.1002/ca.23538

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Manuel Llusa, MD, PhD (Department of Anatomy, University of Barcelona, Barcelona, Spain) for generous assistance in the laboratory work. We thank the BioImaging Core Facility BCF (http://www.maginlab.eu/home-bcf.html).

Funding

This study has been financially supported by Deutsche Gesetzliche Unfallversicherung, Sankt Augustin, Germany (grant number: FR-0272) and Bauerfeind AG, Zeulenroda-Triebes, Germany (grant number: 8344). The authors disclose any financial conflicts of interest that may influence interpretation of this study and/ or results.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantive intellectual contributions to this study, in conception and design (SR, ME, MGE, FS), acquisition of data (SR, ME, MGE, PL), analysis and interpretation of data (SR, FS, PL), drafting and revising the manuscript (SR, ME, MGE, TK, FS, PL), as well as final approval of the version to be submitted (SR, ME, MGE, TK, FS, PL). All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Susanne Rein.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. This study has been financially supported by Deutsche Gesetzliche Unfallversicherung, Sankt Augustin, Germany (grant number: FR-0272) and Bauerfeind AG, Zeulenroda-Triebes, Germany (grant number: 8344). The authors disclose any financial conflicts of interest that may influence interpretation of this study and/ or results.

Ethical approval

All protocols in this study were approved by the local ethics committee review board (approval number 33/17).

Informed consent

The present study is a cadaver study, therefore no informed consent had to be obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rein, S., Esplugas, M., Garcia-Elias, M. et al. Immunofluorescence analysis of sensory nerve endings in the periarticular tissue of the human elbow joint. Arch Orthop Trauma Surg 143, 3779–3794 (2023). https://doi.org/10.1007/s00402-022-04604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04604-0

Keywords

Navigation