Skip to main content

Advertisement

Log in

Is sequential bilateral robotic total knee arthroplasty a safe procedure? A matched comparative pilot study

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

To our knowledge, no papers have reported the results of robotic-assisted surgery for sequential bilateral Total Knee Arthroplasty (TKA). Indeed, sequential bilateral TKA present several benefits, as one single anesthesia, surgical episode, hospitalization, and rehabilitation. The purpose of our study was to evaluate peri-operative outcomes and compare the complication rates, clinical outcomes, and implant positioning of sequential bilateral TKA performed with a robotic-assisted system versus a conventional technique.

Materials and methods

All patients who underwent a sequential bilateral robotic-assisted primary TKA (raTKA) in our institution between November 2019 and February 2021 were included. Twenty patients met the inclusion criteria and were matched with 20 sequential bilateral TKA performed with a conventional technique. The two groups were comparable for the demographic data and the preoperative parameters, including preoperative anticoagulation and ASA score. The minimum follow-up was 6 months.

Results

The operative time was significantly longer in the robotic group (< 0.0001), with a mean additional time of 29 min. There was no significant difference between both groups for postoperative blood loss, rate of blood transfusion, or postoperative pain. The average length of stay was 5 days. There was one early complication in the robotic group due to the tibial trackers. The functional outcomes were similar between both groups, except for the functional KSS score, which was better at 6 months in the robotic group (p < 0.0001). The restoration of the knee alignment and the distal femoral anatomy were significantly better in the robotic group than in the conventional group.

Conclusions

Despite a longer operative time, the peri-operative parameters of sequential bilateral TKA were similar between robotic and conventional techniques. Further, sequential bilateral raTKA was at least as safe as a conventional technique, without additional risk of medical complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stubbs G, Pryke SE, Tewari S, Rogers J, Crowe B, Bridgfoot L et al (2005) Safety and cost benefits of bilateral total knee replacement in an acute hospital. ANZ J Surg 75(9):739–746. https://doi.org/10.1111/j.1445-2197.2005.03516.x

    Article  PubMed  Google Scholar 

  2. Yoon HS, Han CD, Yang IH (2010) Comparison of simultaneous bilateral and staged bilateral total knee arthroplasty in terms of perioperative complications. J Arthroplasty 25(2):179–185. https://doi.org/10.1016/j.arth.2008.11.103

    Article  PubMed  Google Scholar 

  3. Restrepo C, Parvizi J, Dietrich T, Einhorn TA (2007) Safety of simultaneous bilateral total knee arthroplasty. A meta-analysis. J Bone Jt Surg Am 89(6):1220–1226. https://doi.org/10.2106/JBJS.F.01353

    Article  Google Scholar 

  4. Memtsoudis SG, Ma Y, Gonzalez Della Valle A, Mazumdar M, Gaber-Baylis LK, MacKenzie CR et al (2009) Perioperative outcomes after unilateral and bilateral total knee arthroplasty. Anesthesiology 111(6):1206–1216. https://doi.org/10.1097/ALN.0b013e3181bfab7d

    Article  PubMed  Google Scholar 

  5. Merz MK, Bohnenkamp FC, Sulo S, Goldstein WM, Gordon AC (2014) Perioperative differences in conventional and computer-assisted surgery in bilateral total knee arthroplasty. Am J Orthop (Belle Mead NJ) 43(6):262–266

    PubMed  Google Scholar 

  6. Rathod PA, Deshmukh AJ, Cushner FD (2015) Reducing blood loss in bilateral total knee arthroplasty with patient-specific instrumentation. Orthop Clin N Am 46(3):343–350. https://doi.org/10.1016/j.ocl.2015.02.003 (ix)

    Article  Google Scholar 

  7. Mancino F, Cacciola G, Malahias MA, De Filippis R, De Marco D, Di Matteo V et al (2020) What are the benefits of robotic-assisted total knee arthroplasty over conventional manual total knee arthroplasty? A systematic review of comparative studies. Orthop Rev (Pavia) 12(Suppl 1):8657. https://doi.org/10.4081/or.2020.8657

    Article  PubMed  Google Scholar 

  8. Onggo JR, Onggo JD, De Steiger R, Hau R (2020) Robotic-assisted total knee arthroplasty is comparable to conventional total knee arthroplasty: a meta-analysis and systematic review. Arch Orthop Trauma Surg 140(10):1533–1549. https://doi.org/10.1007/s00402-020-03512-5

    Article  PubMed  Google Scholar 

  9. Kayani B, Konan S, Tahmassebi J, Pietrzak JRT, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Jt J 100-B(7):930–937. https://doi.org/10.1302/0301-620X.100B7.BJJ-2017-1449.R1

    Article  CAS  Google Scholar 

  10. Vermue H, Luyckx T, Winnock de Grave P, Ryckaert A, Cools AS, Himpe N et al (2020) Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06341-6

    Article  PubMed  Google Scholar 

  11. Naranje S, Lendway L, Mehle S, Gioe TJ (2015) Does operative time affect infection rate in primary total knee arthroplasty? Clin Orthop Relat Res 473(1):64–69. https://doi.org/10.1007/s11999-014-3628-4

    Article  PubMed  Google Scholar 

  12. Bernard de Villeneuve F, Jacquet C, Puech S, Parratte S, Ollivier M, Argenson JN (2021) Minimum five years follow-up of total knee arthroplasty using morphometric implants in patients with osteoarthritis. J Arthroplasty 36(7):2502–2509. https://doi.org/10.1016/j.arth.2021.02.052

    Article  PubMed  Google Scholar 

  13. Batailler C, Hannouche D, Benazzo F, Parratte S (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04048-y

    Article  PubMed  Google Scholar 

  14. Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD (2019) Accuracy of a new robotically assisted technique for total knee arthroplasty: a cadaveric study. J Arthroplasty 34(11):2799–2803. https://doi.org/10.1016/j.arth.2019.06.040

    Article  PubMed  Google Scholar 

  15. Bourke DL, Smith TC (1974) Estimating allowable hemodilution. Anesthesiology 41(6):609–612. https://doi.org/10.1097/00000542-197412000-00015

    Article  CAS  PubMed  Google Scholar 

  16. Camarasa MA, Olle G, Serra-Prat M, Martin A, Sanchez M, Ricos P et al (2006) Efficacy of aminocaproic, tranexamic acids in the control of bleeding during total knee replacement: a randomized clinical trial. Br J Anaesth 96(5):576–582. https://doi.org/10.1093/bja/ael057

    Article  CAS  PubMed  Google Scholar 

  17. Alghadir AH, Anwer S, Iqbal A, Iqbal ZA (2018) Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res. https://doi.org/10.2147/JPR.S158847

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W (2004) Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain 8(4):283–291. https://doi.org/10.1016/j.ejpain.2003.09.004

    Article  PubMed  Google Scholar 

  19. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    Article  Google Scholar 

  20. Bach CM, Nogler M, Steingruber IE, Ogon M, Wimmer C, Gobel G et al (2002) Scoring systems in total knee arthroplasty. Clin Orthop Relat Res 399:184–196. https://doi.org/10.1097/00003086-200206000-00022

    Article  Google Scholar 

  21. Lee WC, Kwan YH, Chong HC, Yeo SJ (2017) The minimal clinically important difference for Knee Society Clinical Rating System after total knee arthroplasty for primary osteoarthritis. Knee Surg Sports Traumatol Arthrosc 25(11):3354–3359. https://doi.org/10.1007/s00167-016-4208-9

    Article  PubMed  Google Scholar 

  22. Norman GR, Sloan JA, Wyrwich KW (2004) The truly remarkable universality of half a standard deviation: confirmation through another look. Expert Rev Pharmacoecon Outcomes Res 4(5):581–585. https://doi.org/10.1586/14737167.4.5.581

    Article  PubMed  Google Scholar 

  23. Lizaur-Utrilla A, Gonzalez-Parreno S, Martinez-Mendez D, Miralles-Munoz FA, Lopez-Prats FA (2020) Minimal clinically important differences and substantial clinical benefits for Knee Society Scores. Knee Surg Sports Traumatol Arthrosc 28(5):1473–1478. https://doi.org/10.1007/s00167-019-05543-x

    Article  PubMed  Google Scholar 

  24. Stratford PW, Kennedy DM, Robarts SF (2010) Modelling knee range of motion post arthroplasty: clinical applications. Physiother Can 62(4):378–387. https://doi.org/10.3138/physio.62.4.378

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cooke TD (2002) Definition of axial alignment of the lower extremity. J Bone Jt Surg Am 84(1):146–147. https://doi.org/10.2106/00004623-200201000-00027

    Article  Google Scholar 

  26. Cooke TD, Scudamore RA, Bryant JT, Sorbie C, Siu D, Fisher B (1991) A quantitative approach to radiography of the lower limb. Principles and applications. J Bone Jt Surg Br 73(5):715–720. https://doi.org/10.1302/0301-620X.73B5.1894656

    Article  CAS  Google Scholar 

  27. Niki Y, Katsuyama E, Takeda Y, Enomoto H, Toyama Y, Suda Y (2014) Comparison of postoperative morbidity between simultaneous bilateral and staged bilateral total knee arthroplasties: serological perspective and clinical consequences. J Arthroplasty 29(3):504–509. https://doi.org/10.1016/j.arth.2013.07.019

    Article  PubMed  Google Scholar 

  28. Pavone V, Johnson T, Saulog PS, Sculco TP, Bottner F (2004) Perioperative morbidity in bilateral one-stage total knee replacements. Clin Orthop Relat Res 421:155–161. https://doi.org/10.1097/01.blo.0000126309.72205.f7

    Article  Google Scholar 

  29. Peskun C, Mayne I, Malempati H, Kosashvili Y, Gross A, Backstein D (2012) Cardiovascular disease predicts complications following bilateral total knee arthroplasty under a single anesthetic. Knee 19(5):580–584. https://doi.org/10.1016/j.knee.2011.09.010

    Article  PubMed  Google Scholar 

  30. Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19(7):1069–1076. https://doi.org/10.1007/s00167-011-1400-9

    Article  PubMed  Google Scholar 

  31. Weng YJ, Hsu RW, Hsu WH (2009) Comparison of computer-assisted navigation and conventional instrumentation for bilateral total knee arthroplasty. J Arthroplasty 24(5):668–673. https://doi.org/10.1016/j.arth.2008.03.006

    Article  PubMed  Google Scholar 

  32. Jhurani A, Agarwal P, Aswal M, Jain P, Malepati S, Sharma R (2019) Computer navigation has no beneficial effect on blood loss and transfusion in sequential bilateral total knee arthroplasty. J Orthop Surg (Hong Kong) 27(1):2309499019832440. https://doi.org/10.1177/2309499019832440

    Article  PubMed  Google Scholar 

  33. Kalairajah Y, Simpson D, Cossey AJ, Verrall GM, Spriggins AJ (2005) Blood loss after total knee replacement: effects of computer-assisted surgery. J Bone Jt Surg Br 87(11):1480–1482. https://doi.org/10.1302/0301-620X.87B11.16474

    Article  CAS  Google Scholar 

  34. McConnell J, Dillon J, Kinninmonth A, Sarungi M, Picard F (2012) Blood loss following total knee replacement is reduced when using computer-assisted versus standard methods. Acta Orthop Belg 78(1):75–79

    PubMed  Google Scholar 

  35. Rattanaprichavej P, Laoruengthana A, Rasamimogkol S, Varakornpipat P, Reosanguanwong K, Pongpirul K (2019) The effect of prosthesis design on blood loss in simultaneous bilateral total knee arthroplasty: closed-box versus open-box prosthesis. Clin Orthop Surg 11(4):409–415. https://doi.org/10.4055/cios.2019.11.4.409

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bagsby DT, Samujh CA, Vissing JL, Empson JA, Pomeroy DL, Malkani AL (2015) Tranexamic acid decreases incidence of blood transfusion in simultaneous bilateral total knee arthroplasty. J Arthroplasty 30(12):2106–2109. https://doi.org/10.1016/j.arth.2015.06.040

    Article  PubMed  Google Scholar 

  37. Chalmers BP, Mishu M, Chiu YF, Cushner FD, Sculco PK, Boettner F et al (2021) Simultaneous bilateral primary total knee arthroplasty with TXA and restrictive transfusion protocols: still a 1 in 5 risk of allogeneic transfusion. J Arthroplasty 36(4):1318–1321. https://doi.org/10.1016/j.arth.2020.10.042

    Article  PubMed  Google Scholar 

  38. Chen X, Cao X, Yang C, Guo K, Zhu Q, Zhu J (2016) Effectiveness and safety of fixed-dose tranexamic acid in simultaneous bilateral total knee arthroplasty: a randomized double-blind controlled trial. J Arthroplasty 31(11):2471–2475. https://doi.org/10.1016/j.arth.2016.04.003

    Article  PubMed  Google Scholar 

  39. Naziri Q, Cusson BC, Chaudhri M, Shah NV, Sastry A (2019) Making the transition from traditional to robotic-arm assisted TKA: What to expect? A single-surgeon comparative-analysis of the first-40 consecutive cases. J Orthop 16(4):364–368. https://doi.org/10.1016/j.jor.2019.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bhimani SJ, Bhimani R, Smith A, Eccles C, Smith L, Malkani A (2020) Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open 1(2):8–12. https://doi.org/10.1302/2633-1462.12.BJO-2019-0004.R1

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shetty GM, Mullaji A, Bhayde S, Chandra Vadapalli R, Desai D (2010) Simultaneous bilateral versus unilateral computer-assisted total knee arthroplasty: a prospective comparison of early postoperative pain and functional recovery. Knee 17(3):191–195. https://doi.org/10.1016/j.knee.2009.08.009

    Article  PubMed  Google Scholar 

  42. Powell RS, Pulido P, Tuason MS, Colwell CW Jr, Ezzet KA (2006) Bilateral vs unilateral total knee arthroplasty: a patient-based comparison of pain levels and recovery of ambulatory skills. J Arthroplasty 21(5):642–649. https://doi.org/10.1016/j.arth.2005.08.009

    Article  PubMed  Google Scholar 

  43. Alghadir AH, Iqbal ZA, Anwer S, Anwar D (2020) Comparison of simultaneous bilateral versus unilateral total knee replacement on pain levels and functional recovery. BMC Musculoskelet Disord 21(1):246. https://doi.org/10.1186/s12891-020-03269-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hussain N, Chien T, Hussain F, Bookwala A, Simunovic N, Shetty V et al (2013) Simultaneous versus staged bilateral total knee arthroplasty: a meta-analysis evaluating mortality, peri-operative complications and infection rates. HSS J 9(1):50–59. https://doi.org/10.1007/s11420-012-9315-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meehan JP, Danielsen B, Tancredi DJ, Kim S, Jamali AA, White RH (2011) A population-based comparison of the incidence of adverse outcomes after simultaneous-bilateral and staged-bilateral total knee arthroplasty. J Bone Jt Surg Am 93(23):2203–2213. https://doi.org/10.2106/JBJS.J.01350

    Article  Google Scholar 

  46. Stefansdottir A, Lidgren L, Robertsson O (2008) Higher early mortality with simultaneous rather than staged bilateral TKAs: results from the Swedish Knee Arthroplasty Register. Clin Orthop Relat Res 466(12):3066–3070. https://doi.org/10.1007/s11999-008-0404-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN (2006) Bilateral total knee replacement: staging and pulmonary embolism. J Bone Jt Surg Am 88(10):2146–2151. https://doi.org/10.2106/JBJS.E.01323

    Article  Google Scholar 

  48. Kamara E, Berliner ZP, Hepinstall MS, Cooper HJ (2017) Pin site complications associated with computer-assisted navigation in hip and knee arthroplasty. J Arthroplasty 32(9):2842–2846. https://doi.org/10.1016/j.arth.2017.03.073

    Article  PubMed  Google Scholar 

  49. Wysocki RW, Sheinkop MB, Virkus WW, Della Valle CJ (2008) Femoral fracture through a previous pin site after computer-assisted total knee arthroplasty. J Arthroplasty 23(3):462–465. https://doi.org/10.1016/j.arth.2007.03.019

    Article  PubMed  Google Scholar 

  50. Lonner JH, Kerr GJ (2019) Low rate of iatrogenic complications during unicompartmental knee arthroplasty with two semiautonomous robotic systems. Knee 26(3):745–749. https://doi.org/10.1016/j.knee.2019.02.005

    Article  PubMed  Google Scholar 

  51. Beldame J, Boisrenoult P, Beaufils P (2010) Pin track induced fractures around computer-assisted TKA. Orthop Traumatol Surg Res 96(3):249–255. https://doi.org/10.1016/j.otsr.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  52. Owens RF Jr, Swank ML (2010) Low incidence of postoperative complications due to pin placement in computer-navigated total knee arthroplasty. J Arthroplasty 25(7):1096–1098. https://doi.org/10.1016/j.arth.2009.07.025

    Article  PubMed  Google Scholar 

  53. Tsay EL, Grace TR, Vail T, Ward D (2019) Bilateral simultaneous vs staged total knee arthroplasty: minimal difference in perioperative risks. J Arthroplasty 34(12):2944–2949. https://doi.org/10.1016/j.arth.2019.07.002 (e2941)

    Article  PubMed  Google Scholar 

  54. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J (2008) Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 466(7):1710–1715. https://doi.org/10.1007/s11999-008-0209-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khlopas A, Sodhi N, Hozack WJ, Chen AF, Mahoney OM, Kinsey T et al (2019) Patient-reported functional and satisfaction outcomes after robotic-arm-assisted total knee arthroplasty: early results of a prospective multicenter investigation. J Knee Surg. https://doi.org/10.1055/s-0039-1684014

    Article  PubMed  Google Scholar 

  56. Marchand RC, Sodhi N, Anis HK, Ehiorobo J, Newman JM, Taylor K et al (2019) One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty. J Knee Surg 32(11):1063–1068. https://doi.org/10.1055/s-0039-1683977

    Article  PubMed  Google Scholar 

  57. Kort N, Stirling P, Pilot P, Muller JH (2021) Robot-assisted knee arthroplasty improves component positioning and alignment, but results are inconclusive on whether it improves clinical scores or reduces complications and revisions: a systematic overview of meta-analyses. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06472-4

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cho KJ, Seon JK, Jang WY, Park CG, Song EK (2019) Robotic versus conventional primary total knee arthroplasty: clinical and radiological long-term results with a minimum follow-up of ten years. Int Orthop 43(6):1345–1354. https://doi.org/10.1007/s00264-018-4231-1

    Article  PubMed  Google Scholar 

  59. Marchand RC, Sodhi N, Khlopas A, Sultan AA, Harwin SF, Malkani AL et al (2017) Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation. J Knee Surg 30(9):849–853. https://doi.org/10.1055/s-0037-1607450

    Article  PubMed  Google Scholar 

  60. Smith AF, Eccles CJ, Bhimani SJ, Denehy KM, Bhimani RB, Smith LS et al (2019) Improved patient satisfaction following robotic-assisted total knee arthroplasty. J Knee Surg. https://doi.org/10.1055/s-0039-1700837

    Article  PubMed  Google Scholar 

  61. Kayani B, Konan S, Pietrzak JRT, Haddad FS (2018) Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplasty 33(8):2496–2501. https://doi.org/10.1016/j.arth.2018.03.042

    Article  PubMed  Google Scholar 

  62. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS (2019) Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 4(10):611–617. https://doi.org/10.1302/2058-5241.4.190022

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 27(4):1132–1141. https://doi.org/10.1007/s00167-018-5138-5

    Article  PubMed  Google Scholar 

  64. Sultan AA, Samuel LT, Khlopas A, Sodhi N, Bhowmik-Stoker M, Chen A et al (2019) Robotic-arm assisted total knee arthroplasty more accurately restored the posterior condylar offset ratio and the Insall-Salvati Index compared to the manual technique; a cohort-matched study. Surg Technol Int 34:409–413

    PubMed  Google Scholar 

  65. Seidenstein A, Birmingham M, Foran J, Ogden S (2020) Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation: a cadaveric study. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06038-w

    Article  PubMed  Google Scholar 

  66. Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F et al (2020) MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06283-z

    Article  PubMed  Google Scholar 

  67. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471(1):118–126. https://doi.org/10.1007/s11999-012-2407-3

    Article  PubMed  Google Scholar 

  68. Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty 29(12):2373–2377. https://doi.org/10.1016/j.arth.2013.12.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

NR.

Funding

This research did not receive any specific grant from funding agencies from the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Batailler.

Ethics declarations

Conflict of interest

CB: Grant from SoFCOT (Société francaise de chirurgie orthopédique et traumatologique). MA: Employee from Zimmer Biomet. XF: Consultant for Stryker endoscopie, Zimmer Biomet. MO: Consultant for Arthrex, Stryker and Newclip technics. SP: Royalties from Zimmer Biomet and Newclip; Consultant for Zimmer Biomet; Treasurer for European Knee Society.

Ethical approval

The study was approved by our hospital’s Institutional Review Board (study ID Number: MF3867, approval date: 20th December 2020). All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee, the 1964 Helsinki declaration, and its later amendments, or comparable ethical standards.

Informed consent

All patient participants provided informed consent for review of their medical records.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batailler, C., Anderson, M.B., Flecher, X. et al. Is sequential bilateral robotic total knee arthroplasty a safe procedure? A matched comparative pilot study. Arch Orthop Trauma Surg 143, 1599–1609 (2023). https://doi.org/10.1007/s00402-022-04455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04455-9

Keywords

Navigation