Skip to main content

Advertisement

Log in

Iliac dysmorphism: defining radiographic characteristics and association with pelvic osseous corridor size

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Insertion of iliac wing implants requires understanding of the curvilinear shape of the ilium. This study serves to quantitatively identify the area of iliac inner-outer table convergence (IOTC), characterize the iliac wing osseous corridor, and define the gluteal pillar osseous corridor.

Methods

Computed tomography scans of 100 male and 100 female hemipelves were evaluated. The iliac wing was studied using manual best-fit analysis of the bounds of the inner and outer cortices. The IOTC was defined as the location of the iliac wing with an intercortical width less than 5 mm. The shortest distance from the apex of the iliac crest to the superior border of the IOTC was defined as the iliac wing osseous corridor. Finally, the width of the gluteal pillar corridor from the gluteus medius tubercle to the ischial tuberosity was measured.

Results

The IOTC is an elliptical area measuring 22.3 cm2. All ilia had an area where the inner and outer cortices converged to an intercortical width of less than 5 mm; 48% converged to a single cortex. The shortest mean distance from the superior edge of the iliac crest to the beginning of the IOTC was 20.3 mm in men and 13.8 mm in women (p < 0.001). The gluteal pillar diameter averaged 5.3 mm in men and 4.3 mm in women (p < 0.001).

Discussion

All ilia converge to a thin and frequently unicortical central region. A 4.5 mm iliac wing lag screw will not breach the cortex if it remains within 20 mm or 14 mm distal to the cranial aspect of the iliac crest in males and females, respectively. Not only is the gluteal pillar smaller than previously thought, in 41% of males and 73% of females, it is not be large enough for 5 mm implants.

Conclusion

This study quantitatively assesses the dimensions of the IOTC, the iliac crest osseous corridor, and the gluteal pillar. Overall, our findings provide improved understanding of the limits for implant use in the iliac wing as well as better appreciation of the complex osteology of the ilium. This will help surgeons to identify safe areas for implant placement and avoid inadvertent cortical penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sen M, Harvey EJ, Steinitz D, Guy P, Reindl R (2005) Anatomical risks of using supra-acetabular screws in percutaneous internal fixation of the acetabulum and pelvis. Am J Orthop (Belle Mead NJ) 34(2):94–96 (in Eng)

    PubMed  Google Scholar 

  2. Starr AJ, Reinert CM, Jones AL (1998) Percutaneous fixation of the columns of the acetabulum: a new technique. J Orthop Trauma 12(1):51–58 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  3. Starr AJ, Jones AL, Reinert CM, Borer DS (2001) Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury 32(Suppl 1):45–50 (in Eng)

    Article  Google Scholar 

  4. Sen RK, Tripathy SK, Aggarwal S, Goyal T, Meena DS, Mahapatra S (2012) A safe technique of anterior column lag screw fixation in acetabular fractures. Int Orthop 36(11):2333–2340. https://doi.org/10.1007/s00264-012-1661-z (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parker PJ, Copeland C (1997) Percutaneous fluoroscopic screw fixation of acetabular fractures. Injury 28(9–10):597–600. https://doi.org/10.1016/s0020-1383(97)00097-1 (in Eng)

    Article  CAS  PubMed  Google Scholar 

  6. Routt ML, Nork SE, Mills WJ (2000) Percutaneous fixation of pelvic ring disruptions. Clin Orthop Relat Res 375:15–29 (in Eng)

    Article  Google Scholar 

  7. Gardner MJ, Morshed S, Nork SE, Ricci WM, Chip Routt ML (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24(10):622–629. https://doi.org/10.1097/BOT.0b013e3181cf0404 (in Eng)

    Article  PubMed  Google Scholar 

  8. Hasenboehler EA et al (2011) Prevalence of sacral dysmorphia in a prospective trauma population: implications for a “safe” surgical corridor for sacro-iliac screw placement. Patient Saf Surg 5(1):8. https://doi.org/10.1186/1754-9493-5-8 (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Routt ML, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: early complications of the percutaneous technique. J Orthop Trauma 11(8):584–589 (in Eng)

    Article  PubMed  Google Scholar 

  10. Kaiser SP, Gardner MJ, Liu J, Routt ML, Morshed S (2014) Anatomic determinants of sacral dysmorphism and implications for safe iliosacral screw placement. J Bone Jt Surg Am 96(14):e120. https://doi.org/10.2106/JBJS.M.00895 (in Eng)

    Article  Google Scholar 

  11. Haidukewych GJ, Kumar S, Prpa B (2003) Placement of half-pins for supra-acetabular external fixation: an anatomic study. Clin Orthop Relat Res 411:269–273. https://doi.org/10.1097/01.blo.0000069899.31220.d7 (in Eng)

    Article  Google Scholar 

  12. Tosounidis TH, Mauffrey C, Giannoudis PV (2018) Optimization of technique for insertion of implants at the supra-acetabular corridor in pelvis and acetabular surgery. Eur J Orthop Surg Traumatol 28(1):29–35. https://doi.org/10.1007/s00590-017-2007-8 (in Eng)

    Article  PubMed  Google Scholar 

  13. Vaidya R, Colen R, Vigdorchik J, Tonnos F, Sethi A (2012) Treatment of unstable pelvic ring injuries with an internal anterior fixator and posterior fixation: initial clinical series. J Orthop Trauma 26(1):1–8. https://doi.org/10.1097/BOT.0b013e318233b8a7 (in Eng)

    Article  PubMed  Google Scholar 

  14. von Glinski A et al (2020) The iliac pillar—definition of an osseous fixation pathway for internal and external fixation. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2020.04.009 (in Eng)

    Article  Google Scholar 

  15. Wang M, Jacobs RC, Bartlett CS, Schottel PC (2021) Defining the iliac wing osseous fixation pathways: anatomy and implant constriction points. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03681-3 (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang M, Jacobs RC, Bartlett CS, Schottel PC (2021) Supraacetabular osseous corridor: defining dimensions, sex differences, and alternatives. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03786-3 (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miller AN, Routt ML (2012) Variations in sacral morphology and implications for iliosacral screw fixation. J Am Acad Orthop Surg 20(1):8–16. https://doi.org/10.5435/JAAOS-20-01-008 (in Eng)

    Article  PubMed  Google Scholar 

  18. Blum LE, Hake ME (2018) Preoperative planning for percutaneous transsacral, transiliac screws. J Orthop Trauma 32(Suppl 1):S22–S23. https://doi.org/10.1097/BOT.0000000000001196 (in Eng)

    Article  PubMed  Google Scholar 

  19. Caldwell WE, Moloy HC (1938) Anatomical variations in the female pelvis: their classification and obstetrical significance: (Section of Obstetrics and Gynæcology). Proc R Soc Med 32(1):1–30 (in Eng)

    PubMed  PubMed Central  Google Scholar 

  20. Abitbol MM (1987) Obstetrics and posture in pelvic anatomy. J Human Evol 16:243–255

    Article  Google Scholar 

  21. Dana W et al (2003) Rethinking pelvic typologies and the human birth mechanism. Curr Anthropol 44:5–31

    Article  Google Scholar 

  22. Chen KN, Wang G, Cao LG, Zhang MC (2009) Differences of percutaneous retrograde screw fixation of anterior column acetabular fractures between male and female: a study of 164 virtual three-dimensional models. Injury 40(10):1067–1072. https://doi.org/10.1016/j.injury.2009.01.014 (in Eng)

    Article  PubMed  Google Scholar 

  23. Jung GH, Lee Y, Kim JW (2017) Computational analysis of the safe zone for the antegrade lag screw in posterior column fixation with the anterior approach in acetabular fracture: a cadaveric study. Injury 48(3):608–614. https://doi.org/10.1016/j.injury.2017.01.028 (in Eng)

    Article  PubMed  Google Scholar 

  24. Ochs BG, Stuby FM, Stoeckle U, Gonser CE (2015) Virtual mapping of 260 three-dimensional hemipelvises to analyse gender-specific differences in minimally invasive retrograde lag screw placement in the posterior acetabular column using the anterior pelvic and midsagittal plane as reference. BMC Musculoskelet Disord 16:240. https://doi.org/10.1186/s12891-015-0697-9 (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shahulhameed A, Roberts CS, Pomeroy CL, Acland RD, Giannoudis PV (2010) Mapping the columns of the acetabulum–implications for percutaneous fixation. Injury 41(4):339–342. https://doi.org/10.1016/j.injury.2009.08.004 (in Eng)

    Article  PubMed  Google Scholar 

  26. Schildhauer TA, McCulloch P, Chapman JR, Mann FA (2002) Anatomic and radiographic considerations for placement of transiliac screws in lumbopelvic fixations. J Spinal Disord Tech 15(3):199–205 (in Eng)

    Article  PubMed  Google Scholar 

  27. Cole PA, Jamil M, Jacobson AR, Hill BW (2015) “The Skiver Screw”: a useful fixation technique for iliac wing fractures. J Orthop Trauma 29(7):e231–e234. https://doi.org/10.1097/BOT.0000000000000274 (in Eng)

    Article  PubMed  Google Scholar 

  28. Kanezaki S et al (2020) Analysis of computed tomography-based infra-acetabular morphometry to assess the feasibility of infra-acetabular screws. Arch Orthop Trauma Surg 140(3):359–364. https://doi.org/10.1007/s00402-019-03280-x (in Eng)

    Article  PubMed  Google Scholar 

  29. Ma N, Hu X, Tao Z, Yang M (2021) Application of a three-dimensional virtual model to study the effect of fluoroscopic angle on infra-acetabular corridor parameters and screw insertion rates. J Orthop Surg Res 16(1):574. https://doi.org/10.1186/s13018-021-02730-w (in Eng)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ochs BG, Stuby FM, Ateschrang A, Stoeckle U, Gonser CE (2014) Retrograde lag screw placement in anterior acetabular column with regard to the anterior pelvic plane and midsagittal plane—virtual mapping of 260 three-dimensional hemipelvises for quantitative anatomic analysis. Injury 45(10):1590–1598. https://doi.org/10.1016/j.injury.2014.06.026 (in Eng)

    Article  PubMed  Google Scholar 

  31. McLaren DA et al (2021) Corridor-diameter-dependent angular tolerance for safe transiliosacral screw placement: an anatomic study of 433 pelves. Eur J Orthop Surg Traumatol 31(7):1485–1492. https://doi.org/10.1007/s00590-021-02913-5 (in Eng)

    Article  PubMed  Google Scholar 

  32. Kwan MK, Jeffry A, Chan CY, Saw LB (2012) A radiological evaluation of the morphometry and safety of S1, S2 and S2-ilium screws in the Asian population using three dimensional computed tomography scan: an analysis of 180 pelvis. Surg Radiol Anat 34(3):217–227. https://doi.org/10.1007/s00276-011-0919-2 (in Eng)

    Article  PubMed  Google Scholar 

  33. Trikha V, Gaba S, Kumar A, Mittal S (2019) Safe corridor for iliosacral and trans-sacral screw placement in Indian population: a preliminary CT based anatomical study. J Clin Orthop Trauma 10(2):427–431. https://doi.org/10.1016/j.jcot.2018.01.007 (in Eng)

    Article  PubMed  Google Scholar 

  34. Betti L, Manica A (1889) Human variation in the shape of the birth canal is significant and geographically structured. Proc Biol Sci 285:2018. https://doi.org/10.1098/rspb.2018.1807 (in Eng)

    Article  Google Scholar 

  35. Waltenberger L, Pany-Kucera D, Rebay-Salisbury K, Mitteroecker P (2021) The association of parturition scars and pelvic shape: a geometric morphometric study. Am J Phys Anthropol 174(3):519–531. https://doi.org/10.1002/ajpa.24196 (in Eng)

    Article  PubMed  Google Scholar 

  36. Vyas DA, Jones DS, Meadows AR, Diouf K, Nour NM, Schantz-Dunn J (2019) Challenging the use of race in the vaginal birth after cesarean section calculator. Womens Health Issues 29(3):201–204. https://doi.org/10.1016/j.whi.2019.04.007 (in Eng)

    Article  PubMed  Google Scholar 

  37. Wang M (2021) Iliac dysmorphism data. Mendeley Data. https://doi.org/10.17632/vy5wsgphf2.2

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Weston Pack for assisting in statistical analysis of the data, particularly with multivariate analysis.

Funding

No funding was utilized for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miqi Wang.

Ethics declarations

Conflict of interest

Craig S. Bartlett is a paid consultant for Stryker and SI Bone. He holds stock in Summate Technology. Patrick C. Schottel is a paid consultant for Synthes. Miqi Wang holds stock in AbbVie Inc. Robert C. Jacobs has nothing to disclose.

Informed consent

Institutional IRB approval was obtained. No informed consent was required for this retrospective review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Jacobs, R.C., Bartlett, C.S. et al. Iliac dysmorphism: defining radiographic characteristics and association with pelvic osseous corridor size. Arch Orthop Trauma Surg 143, 1841–1847 (2023). https://doi.org/10.1007/s00402-022-04376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04376-7

Keywords

Navigation