Skip to main content

Advertisement

Log in

Internal fixation of radiation-induced fragility fractures of the pelvis: a case series

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The optimal treatment for radiation-induced fragility fractures of the pelvis (RI-FFP) is not well evaluated due to the rarity of the condition.

Purpose

The aim of this retrospective study was to assess the prevalence of RI-FFP, the radiological and clinical outcomes as well as the complications of patients treated with internal fixation.

Methods

A retrospective review of our database was performed to identify all surgically treated patients with RI-FFP. Surgical stabilization was recommended for patients with FFP type III and FFP type IV. Surgical stabilization was also recommended after 5–7 days for patients with FFP type II in case of unsuccessful conservative treatment. Demographic data, fracture patterns according to the FFP classification of Rommens and Hofmann, type of treatment and surgery-related complications including nonunion, hardware failure, fracture progression (secondary fracture) or infection were documented.

Results

Among 500 patients with FFP, the prevalence of patients with RI-FFP was 1% (5/500): 5 patients with a median age of 79 years (76–79). The median time interval from radiation to fracture was 18 months (18–24). All of them underwent internal fixation. Two patients experienced surgery-related complications, one due to hardware failure and one due to fracture progression. At median follow-up of 27 months, all fractures had healed. Patients reached a good level of mobility with a median Parker Mobility Score of 7 and suffered moderate pain with a median value of 2.5 on the numeric rating scale.

Conclusion

RI-FFP remains a rare injury (1%). In our experience, patients, who underwent surgical treatment, obtained a high level of mobility and a moderate pain score after 2 years of follow-up. Internal fixation can be recommended in RI-FFP. Because bone healing may be impaired due to previous irradiation, highly stable constructs are required to avoid fracture progression or revision surgery.

Level of evidence

III, retrospective study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Higham CE, Faithfull S (2015) Bone health and pelvic radiotherapy. Clin Oncol (R Coll Radiol) 27:668–678. https://doi.org/10.1016/j.clon.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Vitzthum LK, Park H, Zakeri K, Heide ES, Nalawade V, Mundt AJ, Vaida F, Murphy JD, Mell LK (2020) Risk of pelvic fracture with radiation therapy in older patients. Int J Radiat Oncol Biol Phys 106:485–492. https://doi.org/10.1016/j.ijrobp.2019.10.006

    Article  PubMed  Google Scholar 

  3. Nanninga GL, de Leur K, Panneman MJ, van der Elst M, Hartholt KA (2014) Increasing rates of pelvic fractures among older adults: the Netherlands, 1986–2011. Age Ageing 43:648–653. https://doi.org/10.1093/ageing/aft212

    Article  PubMed  Google Scholar 

  4. Andrich S, Haastert B, Neuhaus E, Neidert K, Arend W, Ohmann C, Grebe J, Vogt A, Jungbluth P, Rösler G, Windolf J, Icks A (2015) Epidemiology of pelvic fractures in Germany: considerably high incidence rates among older people. PLoS ONE 10:e0139078. https://doi.org/10.1371/journal.pone.0139078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krappinger D, Kaser V, Merkel A, Neururer S, Lindtner RA (2021) An alphanumeric classification of osteoporotic pelvic ring injuries. Arch Orthop Trauma Surg 141(5):861–869. https://doi.org/10.1007/s00402-020-03546-9

    Article  PubMed  Google Scholar 

  6. Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44:1733–1744. https://doi.org/10.1016/j.injury.2013.06.023

    Article  PubMed  Google Scholar 

  7. Hotta K, Kobayashi T (2021) Functional treatment strategy for fragility fractures of the pelvis in geriatric patients. Eur J Trauma Emerg Surg 47(1):21–27. https://doi.org/10.1007/s00068-020-01484-0

    Article  PubMed  Google Scholar 

  8. Ueda Y, Inui T, Kurata Y, Tsuji H, Saito J, Shitan Y (2021) Prolonged pain in patients with fragility fractures of the pelvis ma. Eur J Trauma Emerg Surg 47(2):507–513. https://doi.org/10.1007/s00068-019-01150-0

    Article  PubMed  Google Scholar 

  9. Yoshida M, Tajima K, Saito Y, Sato K, Uenishi N, Iwata M (2020) Mobility and mortality of 340 patients with fragility fracture of the pelvis. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-020-01481-3

    Article  PubMed  Google Scholar 

  10. Benzinger P, Becker C, Kerse N, Bleibler F, Büchele G, Icks A, Rapp K (2013) Pelvic fracture rates in community-living people with and without disability and in residents of nursing homes. J Am Med Dir Assoc 14:673–678. https://doi.org/10.1016/j.jamda.2013.03.012

    Article  PubMed  Google Scholar 

  11. Marrinan S, Pearce MS, Jiang XY, Waters S, Shanshal Y (2015) Admission for osteoporotic pelvic fractures and predictors of length of hospital stay, mortality and loss of independence. Age Ageing 44:258–261. https://doi.org/10.1093/ageing/afu123

    Article  PubMed  Google Scholar 

  12. Prieto-Alhambra D, Avilés FF, Judge A, Van Staa T, Nogués X, Arden NK, Díez-Pérez A, Cooper C, Javaid MK (2012) Burden of pelvis fracture: a population-based study of incidence, hospitalisation and mortality. Osteoporos Int 23:2797–2803. https://doi.org/10.1007/s00198-012-1907-z

    Article  CAS  PubMed  Google Scholar 

  13. Cannon CP, Lin PP, Lewis VO, Yasko AW (2008) Management of radiation-associated fractures. J Am Acad Orthop Surg 16:541–549

    Article  PubMed  Google Scholar 

  14. Sternheim A, Saidi K, Lochab J, O’Donnell PW, Eward WC, Griffin A, Wunder JS, Ferguson P (2013) Internal fixation of radiation-induced pathological fractures of the femur has a high rate of failure. Bone Jt J 95-B:1144–1148. https://doi.org/10.1302/0301-620X.95B8.31832

    Article  CAS  Google Scholar 

  15. Urits I, Orhurhu V, Callan J, Maganty NV, Pousti S, Simopoulos T, Yazdi C, Kaye RJ, Eng LK, Kaye AD, Manchikanti L, Viswanath O (2020) Sacral insufficiency fractures: a review of risk factors, clinical presentation, and management. Curr Pain Headache Rep 24:10. https://doi.org/10.1007/s11916-020-0848-z

    Article  PubMed  Google Scholar 

  16. Frey ME, Warner C, Thomas SM, Johar K, Singh H, Mohammad MS et al (2017) Sacroplasty: a ten-year analysis of prospective patients treated with percutaneous sacroplasty: literature review and technical considerations. Pain Physician 20:E1063–E1072

    PubMed  Google Scholar 

  17. Rommens PM, Ossendorf C, Pairon P, Dietz SO, Wagner D, Hofmann A (2015) Clinical pathways for fragility fractures of the pelvic ring: personal experience and review of the literature. J Orthop Sci 20:1–11. https://doi.org/10.1007/s00776-014-0653-9

    Article  PubMed  Google Scholar 

  18. Rommens PM, Boudissa M, Sven K, Kisilak M, Hofmann A, Wagner D (2021) Operative treatment of fragility fractures of the pelvis is connected with lower mortality. A single institution experience. PLoS ONE 9(16):e0253408. https://doi.org/10.1371/journal.pone.0253408

    Article  CAS  Google Scholar 

  19. Walker JB, Mitchell SM, Karr SD, Lowe JA, Jones CB (2018) Percutaneous transiliac–transsacral screw fixation of sacral fragility fractures improves pain, ambulation, and rate of disposition to home. J Orthop Trauma 32:452–456. https://doi.org/10.1097/BOT.0000000000001243

    Article  PubMed  Google Scholar 

  20. Eckardt H, Egger A, Hasler RM, Zech CJ, Vach W, Suhm N, Morgenstern M, Saxer F (2017) Good functional outcome in patients suffering fragility fractures of the pelvis treated with percutaneous screw stabilisation: assessment of complications. Injury 48:2717–2723. https://doi.org/10.1016/j.injury.2017.11.002

    Article  PubMed  Google Scholar 

  21. Arduini M, Saturnino L, Piperno A, Iundusi R, Tarantino U (2015) Fragility fractures of the pelvis: treatment and preliminary results. Aging Clin Exp Res 27(Suppl 1):S61–S67. https://doi.org/10.1007/s40520-015-0430-4

    Article  PubMed  Google Scholar 

  22. Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Jt Surg Br 75:797–798. https://doi.org/10.1302/0301-620X.75B5.8376443

    Article  CAS  Google Scholar 

  23. Rodriguez CS (2001) Pain measurement in the elderly: a review. Pain Manag Nurs 2:38–46. https://doi.org/10.1053/jpmn.2001.23746

    Article  CAS  PubMed  Google Scholar 

  24. Rommens PM, Wagner D, Hofmann A (2017) Fragility fractures of the pelvis. JBJS Rev 21(5):01874474-201703000–00004. https://doi.org/10.2106/JBJS.RVW.16.00057

    Article  Google Scholar 

  25. Matsumura S, Jikko A, Hiranuma H, Deguchi A, Fuchihata H (1996) Effect of X-ray irradiation on proliferation and differentiation of osteoblast. Calcif Tissue Int 59:307–308. https://doi.org/10.1007/s002239900129

    Article  CAS  PubMed  Google Scholar 

  26. Sapienza LG, Salcedo MP, Ning MS, Jhingran A, Klopp AH, Calsavara VF, Schmeler KM, Leite Gomes MJ, de FreitasCarvalho E, Baiocchi G (2020) Pelvic insufficiency fractures after external beam radiation therapy for gynecologic cancers: a meta-analysis and meta-regression of 3929 patients. Int J Radiat Oncol Biol Phys 106:475–484. https://doi.org/10.1016/j.ijrobp.2019.09.012

    Article  PubMed  Google Scholar 

  27. Park SH, Kim JC, Lee JE, Park IK (2011) Pelvic insufficiency fracture after radiotherapy in patients with cervical cancer in the era of PET/CT. Radiat Oncol J 29:269–276. https://doi.org/10.3857/roj.2011.29.4.269

    Article  PubMed  PubMed Central  Google Scholar 

  28. Razavian N, Laucis A, Sun Y, Spratt DE, Owen D, Schonewolf C, Uppal S, Maturen KE, Jolly S (2020) Radiation-induced insufficiency fractures after pelvic irradiation for gynecologic malignancies: a systematic review. Int J Radiat Oncol Biol Phys 108:620–634. https://doi.org/10.1016/j.ijrobp.2020.05.013

    Article  PubMed  Google Scholar 

  29. Ikushima H, Osaki K, Furutani S, Yamashita K, Kishida Y, Kudoh T, Nishitani H (2006) Pelvic bone complications following radiation therapy of gynecologic malignancies: clinical evaluation of radiation-induced pelvic insufficiency fractures. Gynecol Oncol 103:1100–1104. https://doi.org/10.1016/j.ygyno.2006.06.038

    Article  PubMed  Google Scholar 

  30. Tokumaru S, Toita T, Oguchi M, Ohno T, Kato S, Niibe Y, Kazumoto T, Kodaira T, Kataoka M, Shikama N, Kenjo M, Yamauchi C, Suzuki O, Sakurai H, Teshima T, Kagami Y, Nakano T, Hiraoka M, Mitsuhashi N, Kudo S (2012) Insufficiency fractures after pelvic radiation therapy for uterine cervical cancer: an analysis of subjects in a prospective multi-institutional trial, and cooperative study of the Japan Radiation Oncology Group (JAROG) and Japanese Radiation Oncology Study Group (JROSG). Int J Radiat Oncol Biol Phys 84:e195-200. https://doi.org/10.1016/j.ijrobp.2012.03.042

    Article  PubMed  Google Scholar 

  31. Mahmood B, Pasternack J, Razi A, Saleh A (2019) Safety and efficacy of percutaneous sacroplasty for treatment of sacral insufficiency fractures: a systematic review. J Spine Surg 5:365–371. https://doi.org/10.21037/jss.2019.06.05

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gal TJ, Munoz-Antonia T, Muro-Cacho CA, Klotch DW (2000) Radiation effects on osteoblasts in vitro: a potential role in osteoradionecrosis. Arch Otolaryngol Head Neck Surg 126:1124–1128. https://doi.org/10.1001/archotol.126.9.1124

    Article  CAS  PubMed  Google Scholar 

  33. Barth HD, Zimmermann EA, Schaible E, Tang SY, Alliston T, Ritchie RO (2011) Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32:8892–8904. https://doi.org/10.1016/j.biomaterials.2011.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lapina O, Tiškevičius S (2014) Sacral insufficiency fracture after pelvic radiotherapy: a diagnostic challenge for a radiologist. Medicina (Kaunas) 50:249–254. https://doi.org/10.1016/j.medici.2014.09.006

    Article  PubMed  Google Scholar 

  35. Meixel AJ, Hauswald H, Delorme S, Jobke B (2018) From radiation osteitis to osteoradionecrosis: incidence and MR morphology of radiation-induced sacral pathologies following pelvic radiotherapy. Eur Radiol 28:3550–3559. https://doi.org/10.1007/s00330-018-5325-2

    Article  PubMed  Google Scholar 

  36. Strobel K, Burger C, Seifert B, Husarik DB, Soyka JD, Hany TF (2007) Characterization of focal bone lesions in the axial skeleton: performance of planar bone scintigraphy compared with SPECT and SPECT fused with CT. AJR Am J Roentgenol 188:W467–W474. https://doi.org/10.2214/AJR.06.1215

    Article  PubMed  Google Scholar 

  37. Salavati A, Shah V, Wang ZJ, Yeh BM, Costouros NG, Coakley FV (2011) F-18 FDG PET/CT findings in postradiation pelvic insufficiency fracture. Clin Imaging 35:139–142. https://doi.org/10.1016/j.clinimag.2009.12.026

    Article  PubMed  Google Scholar 

Download references

Funding

No funding regarding this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MB, PMR. Data curation: MB, GP. Methodology: GF, DW. Supervision: PMR. Writing—original draft: MB, PMR. Writing—review and editing: PMR, FT.

Corresponding author

Correspondence to Mehdi Boudissa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest in relation with this work.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Consent to participate was obtained from all individual participants included in the study.

Consent for publication

Consent for publication was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudissa, M., Porcheron, G., Wagner, D. et al. Internal fixation of radiation-induced fragility fractures of the pelvis: a case series. Arch Orthop Trauma Surg 143, 865–871 (2023). https://doi.org/10.1007/s00402-022-04358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-022-04358-9

Keywords

Navigation