Skip to main content

Advertisement

Log in

Computed tomography-based classifications of posterior malleolar fractures and their inter- and intraobserver reliability: a comparison of the Haraguchi, Bartoníček/Rammelt, and Mason classifications

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Complex ankle fractures often include fractures of the posterior malleolus. The most clinically relevant posterior malleolus fracture classifications are computed tomography (CT) based. These classifications aim to enable clear communication and help develop treatment strategies. This study investigates the inter- and intraobserver reliability of the Haraguchi, Bartoníček/Rammelt and Mason posterior malleolar fracture classifications.

Materials and methods

CT scans of 113 patients with a mean age of 56.2 (SD ± 17.8) years and fractures involving the posterior malleolus were analyzed twice by 4 observers with different levels of training. The posterior malleolar fractures were classified according to Haraguchi et al., Bartoníček/Rammelt et al. and Mason et al. The intraobserver and interobserver reliabilities were determined by calculating Cohen’s and Fleiss’ kappa values.

Results

We found substantial multi-rater interobserver agreement for all three classifications. The Haraguchi classification 0.799 (CI 0.744–0.855) showed the highest agreement, followed by the Bartoníček/Rammelt 0.744 (0.695–0.793) and Mason 0.717 (CI 0.666–0.768) classifications. Subgroup analyses showed substantial to perfect agreement for the Haraguchi and substantial agreement for the Bartoníček/Rammelt and Mason classifications independent of observer expertise. The intraobserver reliability was perfect for three and substantial for one of the observers. However, the classifications have certain pitfalls and do not consider the number of fragments, articular surface impressions, or intercalary fragments.

Conclusion

All classifications show substantial, if not perfect inter- and intraobserver reliabilities independent of observer level of expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. * Classification numeration—Roman vs. Arabic numerals—was presented exactly as described in the original publications.

References

  1. Daly PJ, Fitzgerald RH, Melton LJ, Llstrup DM (1987) Epidemiology of ankle fractures in Rochester, Minnesota. Acta Orthop 58(5):539–544

    Article  CAS  Google Scholar 

  2. Juto H, Nilsson H, Morberg P (2018) Epidemiology of adult ankle fractures: 1756 cases identified in Norrbotten County during 2009–2013 and classified according to AO/OTA. BMC Musculoskelet Disord 19(1):1–9

    Article  Google Scholar 

  3. Elsoe R, Ostgaard SE, Larsen P (2018) Foot and ankle surgery population-based epidemiology of 9767 ankle fractures. Foot Ankle Surg 24(1):34–39. https://doi.org/10.1016/j.fas.2016.11.002

    Article  PubMed  Google Scholar 

  4. Switaj PJ, Weatherford B, Fuchs D, Rosenthal B, Pang E, Kadakia AR (2014) Evaluation of posterior malleolar fractures and the posterior pilon variant in operatively treated ankle fractures. Foot Ankle Int 35:886–895

    Article  Google Scholar 

  5. Jaskulka RA, Ittner G, Schedl R (1989) Fractures of the posterior tibial margin: Their role in the prognosis of malleolar fractures. J Trauma - Inj Infect Crit Care 29(11):1565–1570

    Article  CAS  Google Scholar 

  6. Rammelt S, Bartoníček J (2020) Posterior malleolar fractures: a critical analysis review. JBJS Rev. 8(8):e19.00207

    Article  Google Scholar 

  7. Verhage SM, Krijnen P, Schipper IB, Hoogendoorn JM (2019) Persistent postoperative step-off of the posterior malleolus leads to higher incidence of post-traumatic osteoarthritis in trimalleolar fractures. Arch Orthop Trauma Surg 139(3):323–329. https://doi.org/10.1007/s00402-018-3056-0

    Article  PubMed  Google Scholar 

  8. Evers J, Fischer M, Raschke M, Riesenbeck O, Milstrey A, Gehweiler D et al (2021) Leave it or fix it? How fixation of a small posterior malleolar fragment neutralizes rotational forces in trimalleolar fractures. Arch Orthop Trauma Surg 0123456789. https://doi.org/10.1007/s00402-021-03772-9

  9. Neumann AP, Rammelt S (2021) Ankle fractures involving the posterior malleolus: patient characteristics and 7-year results in 100 cases. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03875-3

  10. Weigelt L, Hasler J, Flury A, Dimitriou D, Helmy N (2020) Clinical and radiological mid- to long-term results after direct fixation of posterior malleolar fractures through a posterolateral approach. Arch Orthop Trauma Surg 140(11):1641–1647. https://doi.org/10.1007/s00402-020-03353-2

    Article  PubMed  Google Scholar 

  11. Ferries JS, Decoster TA, Firoozbakhsh KK, Garcia JF, Miller RA (1994) Plain radiographic interpretation in trimalleolar ankle fractures poorly assesses posterior fragment size. J Orthop Trauma 8:328–331

    Article  CAS  Google Scholar 

  12. Büchler L, Tannast M, Bonel HM, Weber M (2009) Reliability of radiologic assessment of the fracture anatomy at the posterior tibial plafond in malleolar fractures. J Orthop Trauma 23(3):208–212

    Article  Google Scholar 

  13. Xie W, Lu H, Zhan S, Liu Y, Xu H, Fu Z et al (2021) Outcomes of posterior malleolar fractures with intra-articular impacted fragment. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04002-y

  14. Evers J, Barz L, Wähnert D, Grüneweller N, Raschke MJ, Ochman S (2015) Size matters: the influence of the posterior fragment on patient outcomes in trimalleolar ankle fractures. Injury 46:S109–S113

    Article  Google Scholar 

  15. Vacas-Sánchez E, Olaya-González C, Abarquero-Diezhandino A, Sánchez-Morata E, Vilá-Rico J (2020) How to address the posterior malleolus in ankle fractures? A decision-making model based on the computerised tomography findings. Int Orthop 44(6):1177–1185

    Article  Google Scholar 

  16. Maluta T, Samaila EM, Amarossi A, Dorigotti A, Ricci M, Vecchini E, et al (2021) Can treatment of posterior malleolus fractures with tibio-fibular instability be usefully addressed by Bartonicek classification? Foot Ankle Surg

  17. Wang C, Chen C, Zhou Y, Pan Z et al (2021) Morphological study of CT image of posterior pilon variant fracture and its possible clinical significance. Arch Orthop Trauma Surg 0123456789. https://doi.org/10.1007/s00402-021-04224-0

  18. Nelson M, Jensen N (1940) The treatment of trimalleolar fractures of the ankle. Surg Gynecol Obs 71(1):509–514

    Google Scholar 

  19. Haraguchi N, Haruyama H, Toga H, Kato F (2006) Pathoanatomy of posterior malleolar fractures of the ankle. J Bone Joint Surg Am 88(5):1085–1092

    Article  Google Scholar 

  20. Bartoníček J, Rammelt S, Kostlivý K, Vaněček V, Klika D, Trešl I (2015) Anatomy and classification of the posterior tibial fragment in ankle fractures. Arch Orthop Trauma Surg 135(4):505–516

    Article  Google Scholar 

  21. Mason LW, Marlow WJ, Widnall J, Molloy AP (2017) Pathoanatomy and associated injuries of posterior malleolus fracture of the ankle. Foot Ankle Int 38(11):1229–1235

    Article  Google Scholar 

  22. Müller ME, Nazarian S, Koch P, Schatzker J (1990) The comprehensive classification of fractures of long bones. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  23. Siegel S, Cstellan NJJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  CAS  Google Scholar 

  25. Weber B (1972) Die Verletzungen des oberen Sprunggelenkes. Verlag Hans Huber, Bern, Switzerland

    Google Scholar 

  26. Lauge-Hansen N (1950) Fractures of the ankle. II. Combined experimental-surgical and experimental-roentgenologic investigations. Arch Surg (Chicago, IL, 1920) 60(5):957–985

    CAS  Google Scholar 

  27. Thomsen NOB, Overgaard S, Olsen LH, Hansen H, Nielsen ST (1991) Observer variation in the radiographic classification of ankle fractures. J Bone Joint Surg Br 73(4):676–678

    Article  CAS  Google Scholar 

  28. Malek IA, Machani B, Mevcha AM, Hyder NH (2006) Inter-observer reliability and intra-observer reproducibility of the Weber classification of ankle fractures. J Bone Joint Surg Br 88(9):1204–1206

    Article  CAS  Google Scholar 

  29. Byun SE, Choi W, Choi Y, Ahn TK, Kim HK, Yoon S et al (2019) Impact of two- and three-dimensional computed tomography use on intraobserver and interobserver reliabilities of pilon fracture classification and treatment recommendation. Rev Chir Orthop Traumatol 105(7):900–901

    Google Scholar 

  30. Berger-Groch J, Thiesen DM, Grossterlinden LG, Schaewel J, Fensky F, Hartel MJ (2019) The intra- and interobserver reliability of the Tile AO, the Young and Burgess, and FFP classifications in pelvic trauma. Arch Orthop Trauma Surg 139(5):645–650. https://doi.org/10.1007/s00402-019-03123-9

    Article  PubMed  Google Scholar 

  31. Svanholm H, Starklint H, Gundersen HJG, Fabricius J, Barlebo H, Olsen S (1989) Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 97(8):689–698

    Article  CAS  Google Scholar 

  32. Keiler A, Riechelmann F, Thöni M, Brunner A, Ulmar B (2020) Three-dimensional computed tomography reconstruction improves the reliability of tibial pilon fracture classification and preoperative surgical planning. Arch Orthop Trauma Surg 140(2):187–195. https://doi.org/10.1007/s00402-019-03259-8

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kleinertz.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local ethics committee (WF-093/21).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1751 KB)

Supplementary file2 (PDF 126 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinertz, H., Mueller, E., Tessarzyk, M. et al. Computed tomography-based classifications of posterior malleolar fractures and their inter- and intraobserver reliability: a comparison of the Haraguchi, Bartoníček/Rammelt, and Mason classifications. Arch Orthop Trauma Surg 142, 3895–3902 (2022). https://doi.org/10.1007/s00402-021-04315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04315-y

Keywords

Navigation