Skip to main content

Advertisement

Log in

High-grade preoperative osteoarthritis of the index compartment is a major predictor of meniscal allograft failure

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Preoperatively available predictors of meniscal allograft failure would help in patient counseling and surgical indication for meniscal allograft transplantation (MAT). It was hypothesized that young patient age, high posterior tibial slope (PTS), and high-grade osteoarthritis (OA) are predictors of meniscal allograft failure.

Materials and methods

Patients undergoing MAT with a minimum follow-up of 2 years were included in this retrospective study. Demographic and surgical data, and causes of meniscal allograft failure were collected. PTS and degree of OA (low-grade: Kellgren–Lawrence 0, 1, and 2; high-grade: Kellgren–Lawrence 3 and 4) of the index and opposite tibiofemoral compartments were determined on preoperative radiographs.

Results

This study included 77 patients with a mean age of 25.7 ± 10.1 years at the time of MAT. After a mean follow-up of 7.6 ± 5.6 years, meniscal allograft failure was observed in 26 patients (34%). The median time from MAT to meniscal allograft failure was 1.3 years (inter-quartile range, 2.5 years). Meniscal allograft tears (88%) were the primary cause of graft failure, followed by high-grade OA (12%). Patients experiencing meniscal allograft failure were an average of 2.7 years (95% CI [2.2, 7.5], p = 0.202) older at the time of MAT than patients without failure. PTS was not found to be a predictor of meniscal allograft failure (odds ratio, 0.884 (95% CI [0.727, 1.073], p = 0.212)). Patients with high-grade preoperative OA of the index compartment had 28 times higher odds of experiencing meniscal allograft failure than patients with low-grade preoperative OA (p = 0.008).

Conclusions

High-grade preoperative OA of the index compartment was found to be a significant and clinically relevant predictor of meniscal allograft failure. Surgeons should be aware of the impact of OA on meniscal allograft survival, which needs to be considered in patient counseling and surgical indication for MAT in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McCormick F, Harris JD, Abrams GD, Hussey KE, Wilson H, Frank R, Gupta AK, Bach BR Jr, Cole BJ (2014) Survival and reoperation rates after meniscal allograft transplantation: analysis of failures for 172 consecutive transplants at a minimum 2-year follow-up. Am J Sports Med 42(4):892–897. https://doi.org/10.1177/0363546513520115

    Article  Google Scholar 

  2. Grassi A, Macchiarola L, Lucidi GA, Coco V, Romandini I, Filardo G, Neri MP, Marcacci M, Zaffagnini S (2020) Long-term outcomes and survivorship of fresh-frozen meniscal allograft transplant with soft tissue fixation: minimum 10-year follow-up study. Am J Sports Med 48(10):2360–2369. https://doi.org/10.1177/0363546520932923

    Article  Google Scholar 

  3. Zaffagnini S, Grassi A, Marcheggiani Muccioli GM, Benzi A, Serra M, Rotini M, Bragonzoni L, Marcacci M (2016) Survivorship and clinical outcomes of 147 consecutive isolated or combined arthroscopic bone plug free meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc 24(5):1432–1439. https://doi.org/10.1007/s00167-016-4035-z

    Article  Google Scholar 

  4. Novaretti JV, Patel NK, Lian J, Vaswani R, de Sa D, Getgood A, Musahl V (2019) Long-term survival analysis and outcomes of meniscal allograft transplantation with minimum 10-year follow-up: a systematic review. Arthroscopy 35(2):659–667. https://doi.org/10.1016/j.arthro.2018.08.031

    Article  Google Scholar 

  5. Sochacki KR, Varshneya K, Safran MR, Abrams GD, Donahue J, Wang T, Sherman SL (2020) Reoperation rates following meniscus transplantation using the truven database. Arthroscopy. https://doi.org/10.1016/j.arthro.2020.06.031

    Article  Google Scholar 

  6. Winkler PW, Wagala NN, Hughes JD, Irrgang JJ, Fu FH, Musahl V (2021) Association between meniscal allograft tears and early surgical meniscal allograft failure. Am J Sports Med 49(12):3302–3311. https://doi.org/10.1177/03635465211032970

    Article  Google Scholar 

  7. Lee BS, Bin SI, Kim JM, Kim WK, Choi JW (2017) Survivorship after meniscal allograft transplantation according to articular cartilage status. Am J Sports Med 45(5):1095–1101. https://doi.org/10.1177/0363546516682235

    Article  Google Scholar 

  8. Bloch B, Asplin L, Smith N, Thompson P, Spalding T (2019) Higher survivorship following meniscal allograft transplantation in less worn knees justifies earlier referral for symptomatic patients: experience from 240 patients. Knee Surg Sports Traumatol Arthrosc 27(6):1891–1899. https://doi.org/10.1007/s00167-019-05459-6

    Article  Google Scholar 

  9. Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM (2011) Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken) 63 Suppl 11 (0 11):S208–228. https://doi.org/10.1002/acr.20632

  10. Mahmoud A, Young J, Bullock-Saxton J, Myers P (2018) Meniscal allograft transplantation: the effect of cartilage status on survivorship and clinical outcome. Arthroscopy 34(6):1871-1876.e1871. https://doi.org/10.1016/j.arthro.2018.01.010

    Article  Google Scholar 

  11. Stevenson C, Mahmoud A, Tudor F, Myers P (2019) Meniscal allograft transplantation: undersizing grafts can lead to increased rates of clinical and mechanical failure. Knee Surg Sports Traumatol Arthrosc 27(6):1900–1907. https://doi.org/10.1007/s00167-019-05398-2

    Article  Google Scholar 

  12. Kim JH, Bin SI, Lee BS, Kim JM, Kim NK, Lee CR, Han G (2018) Nonanatomic horn position increases risk of early graft failures after lateral meniscal allograft transplantation. Am J Sports Med 46(14):3407–3414. https://doi.org/10.1177/0363546518802226

    Article  Google Scholar 

  13. Moon HS, Choi CH, Jung M, Lee DY, Eum KS, Kim SH (2020) Medial meniscal posterior horn tears are associated with increased posterior tibial slope: a case-control study. Am J Sports Med 48(7):1702–1710. https://doi.org/10.1177/0363546520917420

    Article  Google Scholar 

  14. Napier RJ, Garcia E, Devitt BM, Feller JA, Webster KE (2019) Increased radiographic posterior tibial slope is associated with subsequent injury following revision anterior cruciate ligament reconstruction. Orthop J Sports Med 7(11):2325967119879373. https://doi.org/10.1177/2325967119879373

    Article  Google Scholar 

  15. Shen X, Xiao J, Yang Y, Liu T, Chen S, Gao Z, Zuo J (2019) Multivariable analysis of anatomic risk factors for anterior cruciate ligament injury in active individuals. Arch Orthop Trauma Surg 139(9):1277–1285. https://doi.org/10.1007/s00402-019-03210-x

    Article  Google Scholar 

  16. Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124(9):575–584. https://doi.org/10.1007/s00402-004-0728-8

    Article  CAS  Google Scholar 

  17. Markl I, Zantop T, Zeman F, Seitz J, Angele P (2015) The effect of tibial slope in acute ACL-insufficient patients on concurrent meniscal tears. Arch Orthop Trauma Surg 135(8):1141–1149. https://doi.org/10.1007/s00402-015-2247-1

    Article  Google Scholar 

  18. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29(2):223–231. https://doi.org/10.1002/jor.21242

    Article  Google Scholar 

  19. Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11(6):684–687. https://doi.org/10.1016/0749-8063(95)90110-8

    Article  CAS  Google Scholar 

  20. Shaffer B, Kennedy S, Klimkiewicz J, Yao L (2000) Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 28(4):524–533. https://doi.org/10.1177/03635465000280041301

    Article  CAS  Google Scholar 

  21. Dean CS, Olivetto J, Chahla J, Serra Cruz R, LaPrade RF (2016) Medial meniscal allograft transplantation: the bone plug technique. Arthrosc Tech 5(2):e329-335. https://doi.org/10.1016/j.eats.2016.01.004

    Article  Google Scholar 

  22. Novaretti JV, Lian J, Sheean AJ, Chan CK, Wang JH, Cohen M, Debski RE, Musahl V (2019) Lateral meniscal allograft transplantation with bone block and suture-only techniques partially restores knee kinematics and forces. Am J Sports Med 47(10):2427–2436. https://doi.org/10.1177/0363546519858085

    Article  Google Scholar 

  23. Kaplan DJ, Glait SA, Ryan WE Jr, Alaia MJ, Campbell KA, Strauss EJ, Jazrawi LM (2017) Meniscal allograft transplantation made simple: bridge and slot technique. Arthrosc Tech 6(6):e2129–e2135. https://doi.org/10.1016/j.eats.2017.08.023

    Article  Google Scholar 

  24. Winkler PW, Rothrauff BB, Buerba RA, Shah N, Zaffagnini S, Alexander P, Musahl V (2020) Meniscal substitution, a developing and long-awaited demand. J Exp Orthop 7(1):55. https://doi.org/10.1186/s40634-020-00270-6

    Article  Google Scholar 

  25. Fritz JM, Irrgang JJ, Harner CD (1996) Rehabilitation following allograft meniscal transplantation: a review of the literature and case study. J Orthop Sports Phys Ther 24(2):98–106. https://doi.org/10.2519/jospt.1996.24.2.98

    Article  CAS  Google Scholar 

  26. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69. https://doi.org/10.2106/00004623-200300002-00008

    Article  Google Scholar 

  27. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502. https://doi.org/10.1136/ard.16.4.494

    Article  CAS  Google Scholar 

  28. Pfeiffer TR, Burnham JM, Hughes JD, Kanakamedala AC, Herbst E, Popchak A, Shafizadeh S, Irrgang JJ, Debski RE, Musahl V (2018) An increased lateral femoral condyle ratio is a risk factor for anterior cruciate ligament injury. J Bone Joint Surg Am 100(10):857–864. https://doi.org/10.2106/jbjs.17.01011

    Article  Google Scholar 

  29. Weinberg DS, Williamson DF, Gebhart JJ, Knapik DM, Voos JE (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45(1):106–113. https://doi.org/10.1177/0363546516662449

    Article  Google Scholar 

  30. Stone KR, Pelsis JR, Surrette ST, Walgenbach AW, Turek TJ (2015) Meniscus transplantation in an active population with moderate to severe cartilage damage. Knee Surg Sports Traumatol Arthrosc 23(1):251–257. https://doi.org/10.1007/s00167-014-3246-4

    Article  Google Scholar 

  31. Yoon KH, Kang SG, Kwon YB, Kim EJ, Kim SG (2019) Clinical outcomes and survival rate of autologous chondrocyte implantation with and without concomitant meniscus allograft transplantation: 10- to 15-year follow-up study. Arch Orthop Trauma Surg 139(8):1117–1123. https://doi.org/10.1007/s00402-019-03148-0

    Article  Google Scholar 

  32. Kempshall PJ, Parkinson B, Thomas M, Robb C, Standell H, Getgood A, Spalding T (2015) Outcome of meniscal allograft transplantation related to articular cartilage status: advanced chondral damage should not be a contraindication. Knee Surg Sports Traumatol Arthrosc 23(1):280–289. https://doi.org/10.1007/s00167-014-3431-5

    Article  CAS  Google Scholar 

  33. Unal M, Aktan C, Levent A, Cetin M, Kose O, Sarikcioglu L (2021) Variations of cross-sectional meniscal morphology between similar-sized menisci: implications on donor selection for meniscal allograft transplantation. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03909-w

    Article  Google Scholar 

  34. Dienst M, Greis PE, Ellis BJ, Bachus KN, Burks RT (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35(1):34–42. https://doi.org/10.1177/0363546506291404

    Article  Google Scholar 

  35. Van Thiel GS, Frank RM, Gupta A, Ghodadra N, Shewman EF, Wang VM, Bach BR, Verma NN, Cole BJ, Provencher MT (2011) Biomechanical evaluation of a high tibial osteotomy with a meniscal transplant. J Knee Surg 24(1):45–53. https://doi.org/10.1055/s-0031-1275401

    Article  Google Scholar 

  36. Willinger L, Lang JJ, von Deimling C, Diermeier T, Petersen W, Imhoff AB, Burgkart R, Achtnich A (2020) Varus alignment increases medial meniscus extrusion and peak contact pressure: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 28(4):1092–1098. https://doi.org/10.1007/s00167-019-05701-1

    Article  Google Scholar 

  37. Ahn JH, Kang HW, Yang TY, Lee JY (2016) Multivariate analysis of risk factors of graft extrusion after lateral meniscus allograft transplantation. Arthroscopy 32(7):1337–1345. https://doi.org/10.1016/j.arthro.2015.12.050

    Article  Google Scholar 

  38. Lee BS, Kim JM, Kim JM, Kim KA, Bin SI (2015) Patient-related risk factors for the extrusion of lateral meniscal allograft transplants. Arthroscopy 31(4):699–706. https://doi.org/10.1016/j.arthro.2014.10.016

    Article  CAS  Google Scholar 

  39. Song JH, Bin SI, Kim JM, Lee BS, Lee CR (2020) Influence of varus alignment on survivorship after lateral meniscal allograft transplantation. Am J Sports Med 48(6):1374–1378. https://doi.org/10.1177/0363546520914592

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christopher D. Harner for the contribution to this study.

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors have contributed substantially to this work: PWW, NNW, and JDH collected data, performed statistical analysis, literature review, and primary manuscript preparation. VM assisted with interpretation of the results as well as editing and final manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Volker Musahl.

Ethics declarations

Conflict of interest

VM reports educational grants, consulting fees, and speaking fees from Smith & Nephew plc, educational grants from Arthrex, is a board member of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS), and deputy editor-in-chief of Knee Surgery, Sports Traumatology, Arthroscopy (KSSTA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, P.W., Wagala, N.N., Hughes, J.D. et al. High-grade preoperative osteoarthritis of the index compartment is a major predictor of meniscal allograft failure. Arch Orthop Trauma Surg 143, 399–407 (2023). https://doi.org/10.1007/s00402-021-04306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04306-z

Keywords

Navigation