Skip to main content
Log in

Morphological study of CT image of posterior pilon variant fracture and its possible clinical significance

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objective

The incidence of posterior pilon variant fractures has been underestimated. The purpose was to study the characteristics of posteromedial (PM) and posterolateral (PL) fragments in CT imaging of posterior pilon variant fractures, and to provide help for clinical diagnosis and treatment.

Methods

CT imaging data of 109 cases of posterior pilon variant fractures in our hospital from January 2013 to December 2020 were retrospectively analyzed. According to Mason and Molloy classification, PM fragments were further divided into pilon subtypes and avulsed subtypes. The largest actual area of fragments in axial and sagittal were selected as the study plane, and the maximum axial lengths of X, Y and Z, α angle, β angle, fragment area (S1–7) and fragment area ratio (FAR1-4), interfragmentary (IF) angle, and back of tibia (BT) angle were measured.

Results

A total of 109 cases were included in this study, 61 of whom were pilon subtypes [90.16% were supination-external rotation (SER) injuries]. 48 cases were avulsed subtypes [81.25% were pronation-external rotation (PER) injuries]. Pilon subtypes were larger than avulsed subtypes in X, Y, Z, α2 Angle, β2 Angle, fragment area and ratio, and IF and BT angle (P < 0.05). There was no difference between α1 and β1 angle (P > 0.05).

Conclusion

The morphology of pilon subtype was larger than that of avulsion subtype. According to fragment size, morphology, and injury mechanism, two fragments of pilon subtype should be anatomic reduction and fixation. However, the PL fragment of avulsion subtype should to be fixed, while PM fragment may only need conservative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Broos PL, Bisschop AP (1991) Operative treatment of ankle fractures in adults: correlation between types of fracture and final results. Injury 22(5):403–406

    Article  CAS  PubMed  Google Scholar 

  2. Court-Brown CM, McBirnie J, Wilson G (1998) Adult ankle fractures–an increasing problem? Acta Orthop Scand 69(1):43–47

    Article  CAS  PubMed  Google Scholar 

  3. Jaskulka RA, Ittner G, Schedl R (1989) Fractures of the posterior tibial margin: their role in the prognosis of malleolar fractures. J Trauma 29(11):1565–1570

    Article  CAS  PubMed  Google Scholar 

  4. Tejwani NC, Pahk B, Egol KA (2010) Effect of posterior malleolus fracture on outcome after unstable ankle fracture. J Trauma 69(3):666–669

    PubMed  Google Scholar 

  5. Gardner Michael J, Sreevathsa B, Hentel Keith D et al (2007) The hyperplantarflexion ankle fracture variant. J Foot Ankle Surg 46(4):256–260

    Article  CAS  PubMed  Google Scholar 

  6. Weber M (2004) Trimalleolar fractures with impaction of the posteromedial tibial plafond: implications for talar stability. Foot Ankle Int 25(10):716–727

    Article  PubMed  Google Scholar 

  7. Switaj PJ, Weatherford B, Fuchs D et al (2014) Evaluation of posterior malleolar fractures and the posterior pilon variant in operatively treated ankle fractures. Foot Ankle Int 35(9):886–895

    Article  PubMed  Google Scholar 

  8. Haraguchi N, Haruyama H, Toga H et al (2006) Pathoanatomy of posterior malleolar fractures of the ankle. J Bone Jt Surg Am 88(5):1085–1092

    Article  Google Scholar 

  9. Mason LW, Marlow WJ, Widnall J et al (2017) Pathoanatomy and associated injuries of posterior malleolus fracture of the ankle. Foot Ankle Int 38(11):1229–1235

    Article  PubMed  Google Scholar 

  10. Bartonicek J, Rammelt S, Kostlivy K et al (2015) Anatomy and classification of the posterior tibial fragment in ankle fractures. Arch Orthop Trauma Surg 135(4):505–516

    Article  PubMed  Google Scholar 

  11. Büchler L, Tannast M, Bonel HM et al (2009) Reliability of radiologic assessment of the fracture anatomy at the posterior tibial plafond in malleolar fractures. J Orthop Trauma 23(3):208–212

    Article  PubMed  Google Scholar 

  12. Amorosa LF, Brown GD, Greisberg J (2010) A surgical approach to posterior pilon fractures. J Orthop Trauma 24(3):188–193

    Article  PubMed  Google Scholar 

  13. Klammer G, Kadakia AR, Joos DA et al (2013) Posterior pilon fractures: a retrospective case series and proposed classification system. Foot Ankle Int 34(2):189–199

    Article  PubMed  Google Scholar 

  14. Stufkens SA, van den Bekerom MP, Knupp M et al (2012) The diagnosis and treatment of deltoid ligament lesions in supination-external rotation ankle fractures: a review. Strateg Trauma Limb Reconstr 7(2):73–85

    Article  Google Scholar 

  15. McDaniel WJ, Wilson FC (1977) Trimalleolar fractures of the ankle. An end result study. Clin Orthop Relat Res 122:37–45

    Google Scholar 

  16. Evers J, Fischer M, Raschke M et al (2021) Leave it or fix it? How fixation of a small posterior malleolar fragment neutralizes rotational forces in trimalleolar fractures. Arch Orthop Trauma Surg

  17. Solan MC, Sakellariou A (2017) Posterior malleolus fractures: worth fixing. Bone Jt J 11:1413–1419

    Article  Google Scholar 

  18. Xie W, Lu H, Zhan S et al (2021) Outcomes of posterior malleolar fractures with intra-articular impacted fragment. Arch Orthop Trauma Surg

  19. Neumann AP,Rammelt S (2021) Ankle fractures involving the posterior malleolus: patient characteristics and 7-year results in 100 cases. Arch Orthop Trauma Surg

  20. van den Bekerom MP, Haverkamp D, Kloen P (2009) Biomechanical and clinical evaluation of posterior malleolar fractures. A systematic review of the literature. J Trauma 66(1):279–284

    PubMed  Google Scholar 

  21. Vosoughi AR, Jayatilaka MLT, Fischer B et al (2019) CT analysis of the posteromedial fragment of the posterior malleolar fracture. Foot Ankle Int 40(6):648–655

    Article  PubMed  Google Scholar 

  22. Lauge-Hansen N (1950) Fractures of the ankle. II. Combined experimental-surgical and experimental-roentgenologic investigations. Arch Surg 60(5):957–985

    Article  CAS  Google Scholar 

  23. Golano P, Mariani PP, Rodriguez-Niedenfuhr M et al (2002) Arthroscopic anatomy of the posterior ankle ligaments. Arthroscopy 18(4):353–358

    Article  PubMed  Google Scholar 

  24. Oh CS, Won HS, Hur MS et al (2006) Anatomic variations and MRI of the intermalleolar ligament. AJR Am J Roentgenol 186(4):943–947

    Article  PubMed  Google Scholar 

  25. Milner CE, Soames RW (1998) Anatomy of the collateral ligaments of the human ankle joint. Foot Ankle Int 19(11):757–760

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg ZS, Cheung YY, Beltran J et al (1995) Posterior intermalleolar ligament of the ankle: normal anatomy and MR imaging features. AJR Am J Roentgenol 165(2):387–390

    Article  CAS  PubMed  Google Scholar 

  27. Haraguchi N, Armiger RS (2020) Mechanism of posterior malleolar fracture of the ankle: a cadaveric study. OTA Int 3(2):e060

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yi Y, Chun DI, Won SH et al (2018) Morphological characteristics of the posterior malleolar fragment according to ankle fracture patterns: a computed tomography-based study. BMC Musculoskelet Disord 19(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  29. Su QH, Liu J, Zhang Y et al (2020) Three-dimensional computed tomography mapping of posterior malleolar fractures. World J Clin Cases 8(1):29–37

    Article  PubMed  PubMed Central  Google Scholar 

  30. Haraguchi N, Armiger RS (2009) A new interpretation of the mechanism of ankle fracture. J Bone Jt Surg Am 91(4):821–829

    Article  Google Scholar 

  31. Boszczyk A, Fudalej M, Kwapisz S et al (2018) Ankle fracture—correlation of Lauge-Hansen classification and patient reported fracture mechanism. Forensic Sci Int 282:94–100

    Article  PubMed  Google Scholar 

  32. Michelson J, Solocoff D, Waldman B et al (1997) Ankle fractures. The Lauge-Hansen classification revisited. Clin Orthop Relat Res 345:198–205

    Google Scholar 

  33. Stiehl JB, Skrade DA, Johnson RP (1992) Experimentally produced ankle fractures in autopsy specimens. Clin Orthop Relat Res 285:244–249

    Article  Google Scholar 

  34. Rodriguez EK, Kwon JY, Herder LM et al (2013) Correlation of AO and Lauge-Hansen classification systems for ankle fractures to the mechanism of injury. Foot Ankle Int 34(11):1516–1520

    Article  PubMed  Google Scholar 

  35. Michelson JD, Magid D, McHale K (2007) Clinical utility of a stability-based ankle fracture classification system. J Orthop Trauma 21(5):307–315

    Article  PubMed  Google Scholar 

  36. Michelson JD, Hamel AJ, Buczek FL et al (2002) Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model. J Bone Jt Surg Am 84(11):2029–2038

    Article  Google Scholar 

  37. Sasse M, Nigg BM, Stefanyshyn DJ (1999) Tibiotalar motion–effect of fibular displacement and deltoid ligament transection: in vitro study. Foot Ankle Int 20(11):733–737

    Article  CAS  PubMed  Google Scholar 

  38. Earll M, Wayne J, Brodrick C et al (1996) Contribution of the deltoid ligament to ankle joint contact characteristics: a cadaver study. Foot Ankle Int 17(6):317–324

    Article  CAS  PubMed  Google Scholar 

  39. Fiorella D, Helms CA, Nunley JA (1999) The MR imaging features of the posterior intermalleolar ligament in patients with posterior impingement syndrome of the ankle. Skelet Radiol 28(10):573–576

    Article  CAS  Google Scholar 

  40. Sutera R, Bianco A, Paoli A et al (2015) Identification of normal and pathological posterior inter-malleolar ligament with dedicated high-field vs low-field MRI. A pilot study. Muscles Ligaments Tendons J 5(1):12–17

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verhage SM, Boot F, Schipper IB et al (2016) Open reduction and internal fixation of posterior malleolar fractures using the posterolateral approach. Bone Jt J 6:812–817

    Article  Google Scholar 

  42. Tornetta P, Ricci W, Nork S et al (2011) The posterolateral approach to the tibia for displaced posterior malleolar injuries. J Orthop Trauma 25(2):123–126

    Article  PubMed  Google Scholar 

  43. Weigelt L, Hasler J, Flury A et al (2020) Clinical and radiological mid- to long-term results after direct fixation of posterior malleolar fractures through a posterolateral approach. Arch Orthop Trauma Surg 140(11):1641–1647

    Article  PubMed  Google Scholar 

  44. Hoekstra H, Rosseels W, Rammelt S et al (2017) Direct fixation of fractures of the posterior pilon via a posteromedial approach. Injury 48(6):1269–1274

    Article  PubMed  Google Scholar 

  45. Bali N, Aktselis I, Ramasamy A et al (2017) An evolution in the management of fractures of the ankle: safety and efficacy of posteromedial approach for Haraguchi type 2 posterior malleolar fractures. Bone Jt J 99-B(11):1496–1501

    Article  CAS  Google Scholar 

  46. Assal M, Ray A, Fasel JH et al (2014) A modified posteromedial approach combined with extensile anterior for the treatment of complex tibial pilon fractures (AO/OTA 43-C). J Orthop Trauma 28(6):e138–e145

    Article  PubMed  Google Scholar 

  47. Bartonicek J, Rammelt S, Tucek M et al (2015) Posterior malleolar fractures of the ankle. Eur J Trauma Emerg Surg 41(6):587–600

    Article  CAS  PubMed  Google Scholar 

  48. Hong-fei S, Jin X, Yi-xin C et al (2017) Comparison of the direct and indirect reduction techniques during the surgical management of posterior malleolar fractures. BMC Musculoskelet Disord 18(1):109

    Article  Google Scholar 

  49. Assal M, Dalmau-Pastor M, Ray A et al (2017) How to get to the distal posterior tibial malleolus? A cadaveric anatomic study defining the access corridors through 3 different approaches. J Orthop Trauma 31(4):e127–e129

    Article  PubMed  Google Scholar 

  50. Zhao HM, Linang XJ, Yu GR et al (2013) Effectiveness and biomechanical analysis of three fixation methods in treatment of posterior plion fractures. Chin J Repar Reconstruct Surg 27(10):1190–1195

    Google Scholar 

Download references

Acknowledgements

We would like to give our sincere appreciation to the reviewers for their helpful comments on this article.

Funding

There is no funding for our article.

Author information

Authors and Affiliations

Authors

Contributions

WCL: design of investigation, data collection, data analysis, and writing paper. CCW: data analysis and writing paper. ZYL: data collection. PZE: design of investigation, data collection, data analysis, and writing paper.

Corresponding author

Correspondence to Zhe-er Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work was approved by the Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University. All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, C., Zhou, Y. et al. Morphological study of CT image of posterior pilon variant fracture and its possible clinical significance. Arch Orthop Trauma Surg 143, 1203–1215 (2023). https://doi.org/10.1007/s00402-021-04224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04224-0

Keywords

Navigation