Skip to main content

Supine versus lateral position for total hip replacement: accuracy of biomechanical reconstruction

Abstract

Background

Restoration of normal hip anatomy and biomechanics is a key surgical goal for success in total hip arthroplasty. The aim of this study was to evaluate the influence, if any, that patient positioning in the supine and lateral decubitus positions has in achieving this goal.

Materials and methods

A single center multi-surgeon case-matched series from a tertiary level referral center of patients undergoing primary unilateral THA for osteoarthritis between April 2018 and December 2019 was retrospectively analyzed. Patients (n = 200) were divided into two matched groups: supine (anterior approach, n = 100) and lateral decubitus (direct lateral or posterior/SuperPATH™ approaches, n = 100). Post-operative anteroposterior pelvic radiographs were analyzed using a previously validated software (SurgiMap, Nemaris Inc., USA) for parameters of reconstruction of the hip in the coronal plane; leg length discrepancy, vertical and horizontal displacement of the center of rotation, femoral offset, and total offset.

Results

Mean absolute leg length discrepancy in the supine group was 0.6 ± 3.3 mm (95% [CI] − 0.1 to 1.2 mm) versus 2.4 ± 3.8 mm (95% [CI] 1.6 to 3.1) in the lateral decubitus position (p < 0.001). The center of rotation was displaced medially by a mean of 3.2 ± 2.7 mm in the supine group versus 1.3 ± 4.0 mm in the lateral decubitus group (p < 0.001). For a surgical target of reconstructing both leg length and total offset within 5 mm of native anatomy, the supine group was more than twice as likely to achieve these goals with fewer outliers (OR 2.631, 95% [CI] 1.901–3.643) (76% v 30%, p < 0.001).

Conclusion

Total hip arthroplasty through the anterior approach in the supine position is more consistent and accurate for the restoration of leg length and total offset. Further study is required to assess how this translates with outcome.

Level of evidence

III—retrospective cohort study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

N/A.

Materials availability

N/A.

Code availability

N/A.

References

  1. 1.

    (AOANJRR) AOANJRR (2020) Hip, knee & shoulder arthroplasty: 2020 annual report. Retrieved from Adelaide

  2. 2.

    Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20(4):414–420. https://doi.org/10.1016/j.arth.2004.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Benson JR, Govindarajan M, Muir JM, Lamb IR, Sculco PK (2020) Surgical approach and reaming depth influence the direction and magnitude of acetabular center of rotation changes during total hip arthroplasty. Arthroplast Today 6(3):414–421. https://doi.org/10.1016/j.artd.2020.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bjarnason JA, Reikeras O (2015) Changes of center of rotation and femoral offset in total hip arthroplasty. Ann Transl Med 3(22):355. https://doi.org/10.3978/j.issn.2305-5839.2015.12.37

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bolink SAAN, Lenguerrand E, Brunton LR, Hinds N, Wylde V, Heyligers IC, Blom AW, Whitehouse MR, Grimm B (2019) The association of leg length and offset reconstruction after total hip arthroplasty with clinical outcomes. Clin Biomech (Bristol, Avon) 68:89–95. https://doi.org/10.1016/j.clinbiomech.2019.05.015

    Article  Google Scholar 

  6. 6.

    Bonnin MP, Archbold PH, Basiglini L, Fessy MH, Beverland DE (2012) Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int 22(4):371–378. https://doi.org/10.5301/HIP.2012.9350

    Article  PubMed  Google Scholar 

  7. 7.

    Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, Malchau H (2011) The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 469(2):319–329. https://doi.org/10.1007/s11999-010-1487-1

    Article  PubMed  Google Scholar 

  8. 8.

    Carli AV, Poitras S, Clohisy JC, Beaulé PE (2018) Variation in use of postoperative precautions and equipment following total hip arthroplasty: a survey of the AAHKS and CAS membership. J Arthroplasty 33(10):3201–3205. https://doi.org/10.1016/j.arth.2018.05.043

    Article  PubMed  Google Scholar 

  9. 9.

    Cassidy KA, Noticewala MS, Macaulay W, Lee JH, Geller JA (2012) Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty 27(10):1863–1869. https://doi.org/10.1016/j.arth.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chow J, Penenberg B, Murphy S (2011) Modified micro-superior percutaneously-assisted total hip: early experiences & case reports. Curr Rev Musculoskelet Med 4(3):146–150. https://doi.org/10.1007/s12178-011-9090-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Christensen CP, Jacobs CA (2015) Comparison of patient function during the first six weeks after direct anterior or posterior total hip arthroplasty (THA): a randomized study. J Arthroplasty 30(9 Suppl):94–97. https://doi.org/10.1016/j.arth.2014.12.038

    Article  PubMed  Google Scholar 

  12. 12.

    Dastane M, Dorr LD, Tarwala R, Wan Z (2011) Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop Relat Res 469(2):429–436. https://doi.org/10.1007/s11999-010-1554-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Doehring TC, Rubash HE, Dore DE (1999) Micromotion measurements with hip center and modular neck length alterations. Clin Orthop Relat Res 362:230–239

    Article  Google Scholar 

  14. 14.

    Doehring TC, Rubash HE, Shelley FJ, Schwendeman LJ, Donaldson TK, Navalgund YA (1996) Effect of superior and superolateral relocations of the hip center on hip joint forces. An experimental and analytical analysis. J Arthroplasty 11(6):693–703. https://doi.org/10.1016/s0883-5403(96)80008-8

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102(1 Suppl):S9-20. https://doi.org/10.1016/j.otsr.2015.11.001

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    García-Rey E, García-Cimbrelo E (2016) Abductor biomechanics clinically impact the total hip arthroplasty dislocation rate: a prospective long-term study. J Arthroplasty 31(2):484–490. https://doi.org/10.1016/j.arth.2015.09.039

    Article  PubMed  Google Scholar 

  17. 17.

    Grammatopoulos G, Gofton W, Cochran M, Dobransky J, Carli A, Abdelbary H, Gill HS, Beaulé PE (2018) Pelvic positioning in the supine position leads to more consistent orientation of the acetabular component after total hip arthroplasty. Bone Jt J 100-B(10):1280–1288. https://doi.org/10.1302/0301-620X.100B10.BJJ-2018-0134.R1

    CAS  Article  Google Scholar 

  18. 18.

    Hamilton WG, Parks NL, Huynh C (2015) Comparison of cup alignment, jump distance, and complications in consecutive series of anterior approach and posterior approach total hip arthroplasty. J Arthroplasty 30(11):1959–1962. https://doi.org/10.1016/j.arth.2015.05.022

    Article  PubMed  Google Scholar 

  19. 19.

    Hardinge K (1982) The direct lateral approach to the hip. J Bone Jt Surg Br 64(1):17–19. https://doi.org/10.1302/0301-620X.64B1.7068713

    CAS  Article  Google Scholar 

  20. 20.

    Hueter C (1883) Grundriss der Chirurgie. 2. Leipzig: FCW Vogel, pp 129–200

  21. 21.

    Innmann MM, Maier MW, Streit MR, Grammatopoulos G, Bruckner T, Gotterbarm T, Merle C (2018) Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after total hip arthroplasty. J Arthroplasty 33(1):156–161. https://doi.org/10.1016/j.arth.2017.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Innmann MM, Merle C, Phan P, Beaulé PE, Grammatopoulos G (2021) Differences in spinopelvic characteristics between hip osteoarthritis patients and controls. J Arthroplasty. https://doi.org/10.1016/j.arth.2021.03.031

    Article  PubMed  Google Scholar 

  23. 23.

    Jia F, Guo B, Xu F, Hou Y, Tang X, Huang L (2019) A comparison of clinical, radiographic and surgical outcomes of total hip arthroplasty between direct anterior and posterior approaches: a systematic review and meta-analysis. Hip Int 29(6):584–596. https://doi.org/10.1177/1120700018820652

    Article  PubMed  Google Scholar 

  24. 24.

    Karachalios T, Hartofilakidis G, Zacharakis N, Tsekoura M (1993) A 12- to 18-year radiographic follow-up study of Charnley low-friction arthroplasty. The role of the center of rotation. Clin Orthop Relat Res 296:140–147

    Google Scholar 

  25. 25.

    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502. https://doi.org/10.1136/ard.16.4.494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kurtz WB, Ecker TM, Reichmann WM, Murphy SB (2010) Factors affecting bony impingement in hip arthroplasty. J Arthroplasty 25(4):624–634. https://doi.org/10.1016/j.arth.2009.03.024 ((e621–622))

    Article  PubMed  Google Scholar 

  27. 27.

    Lachiewicz PF, McCaskill B, Inglis A, Ranawat CS, Rosenstein BD (1986) Total hip arthroplasty in juvenile rheumatoid arthritis. Two to eleven-year results. J Bone Jt Surg Am 68(4):502–508

    CAS  Article  Google Scholar 

  28. 28.

    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    CAS  Article  Google Scholar 

  29. 29.

    Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519. https://doi.org/10.1016/S0140-6736(07)60457-7

    Article  PubMed  Google Scholar 

  30. 30.

    Mahmood SS, Mukka SS, Crnalic S, Sayed-Noor AS (2015) The influence of leg length discrepancy after total hip arthroplasty on function and quality of life: a prospective cohort study. J Arthroplasty 30(9):1638–1642. https://doi.org/10.1016/j.arth.2015.04.012

    Article  PubMed  Google Scholar 

  31. 31.

    Mahmood SS, Mukka SS, Crnalic S, Wretenberg P, Sayed-Noor AS (2016) Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop 87(1):36–41. https://doi.org/10.3109/17453674.2015.1091955

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplasty 24(4):646–651. https://doi.org/10.1016/j.arth.2008.02.008

    Article  PubMed  Google Scholar 

  33. 33.

    Meermans G, Doorn JV, Kats JJ (2016) Restoration of the centre of rotation in primary total hip arthroplasty: the influence of acetabular floor depth and reaming technique. Bone Jt J 98-B(12):1597–1603. https://doi.org/10.1302/0301-620X.98B12.BJJ-2016-0345.R1

    CAS  Article  Google Scholar 

  34. 34.

    Meermans G, Konan S, Das R, Volpin A, Haddad FS (2017) The direct anterior approach in total hip arthroplasty: a systematic review of the literature. Bone Jt J 99-B(6):732–740. https://doi.org/10.1302/0301-620X.99B6.38053

    CAS  Article  Google Scholar 

  35. 35.

    Moerenhout K, Benoit B, Gaspard HS, Rouleau DM, Laflamme GY (2020) Greater trochanteric pain after primary total hip replacement, comparing the anterior and posterior approach: a secondary analysis of a randomized trial. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2020.08.011

    Article  PubMed  Google Scholar 

  36. 36.

    Moore AT (1957) The self-locking metal hip prosthesis. J Bone Jt Surg Am 39-A(4):811–827

    CAS  Article  Google Scholar 

  37. 37.

    Patel NN, Shah JA, Erens GA (2019) Current trends in clinical practice for the direct anterior approach total hip arthroplasty. J Arthroplasty 34(9):1987-1993.e1983. https://doi.org/10.1016/j.arth.2019.04.025

    Article  PubMed  Google Scholar 

  38. 38.

    Restrepo C, Parvizi J, Pour AE, Hozack WJ (2010) Prospective randomized study of two surgical approaches for total hip arthroplasty. J Arthroplasty 25(5):671-679.e671. https://doi.org/10.1016/j.arth.2010.02.002

    Article  PubMed  Google Scholar 

  39. 39.

    Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85(2):123–127. https://doi.org/10.3109/17453674.2014.889980

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sheth D, Cafri G, Inacio MC, Paxton EW, Namba RS (2015) Anterior and anterolateral approaches for THA are associated with lower dislocation risk without higher revision risk. Clin Orthop Relat Res 473(11):3401–3408. https://doi.org/10.1007/s11999-015-4230-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sloan M, Premkumar A, Sheth NP (2018) Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Jt Surg Am 100(17):1455–1460. https://doi.org/10.2106/JBJS.17.01617

    Article  Google Scholar 

  42. 42.

    Smith-Petersen MN (1917) A new supra-articular subperiosteal approach to the hip joint. Am J Orthop Surg 15:592–595

    Google Scholar 

  43. 43.

    Soderquist MC, Scully R, Unger AS (2017) Acetabular placement accuracy with the direct anterior approach freehand technique. J Arthroplasty 32(9):2748–2754. https://doi.org/10.1016/j.arth.2017.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Takada R, Jinno T, Miyatake K, Hirao M, Yagishita K, Yoshii T, Okawa A (2019) Supine versus lateral position for accurate positioning of acetabular cup in total hip arthroplasty using the modified Watson-Jones approach: a randomized single-blind controlled trial. Orthop Traumatol Surg Res 105(5):915–922. https://doi.org/10.1016/j.otsr.2019.05.004

    Article  PubMed  Google Scholar 

  45. 45.

    Timperley AJ, Biau D, Chew D, Whitehouse SL (2016) Dislocation after total hip replacement—there is no such thing as a safe zone for socket placement with the posterior approach. Hip Int 26(2):121–127. https://doi.org/10.5301/hipint.5000318

    Article  PubMed  Google Scholar 

  46. 46.

    Toogood PA, Skalak A, Cooperman DR (2009) Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res 467(4):876–885. https://doi.org/10.1007/s11999-008-0473-3

    Article  PubMed  Google Scholar 

  47. 47.

    Wang Z, Hou JZ, Wu CH, Zhou YJ, Gu XM, Wang HH, Feng W, Cheng YX, Sheng X, Bao HW (2018) A systematic review and meta-analysis of direct anterior approach versus posterior approach in total hip arthroplasty. J Orthop Surg Res 13(1):229. https://doi.org/10.1186/s13018-018-0929-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Woolson ST, Hartford JM, Sawyer A (1999) Results of a method of leg-length equalization for patients undergoing primary total hip replacement. J Arthroplasty 14(2):159–164. https://doi.org/10.1016/s0883-5403(99)90119-5

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Worlicek M, Messmer B, Grifka J, Renkawitz T, Weber M (2020) Restoration of leg length and offset correlates with trochanteric pain syndrome in total hip arthroplasty. Sci Rep 10(1):7107. https://doi.org/10.1038/s41598-020-62531-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhao HY, Kang PD, Xia YY, Shi XJ, Nie Y, Pei FX (2017) Comparison of early functional recovery after total hip arthroplasty using a direct anterior or posterolateral approach: a randomized controlled trial. J Arthroplasty 32(11):3421–3428. https://doi.org/10.1016/j.arth.2017.05.056

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Niall P. McGoldrick would like to acknowledge the support of the Irish Institute of Trauma & Orthopaedic Surgery and the Royal College of Surgeons in Ireland towards his fellowship.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Affiliations

Authors

Contributions

Study conception and design were performed by NPM, PEB, and GG. Material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by NPM and GG and all authors commented on previous versions of the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to George Grammatopoulos.

Ethics declarations

Conflict of interest

Authors A, B, C, and D declare they have no financial interests. Author E has received royalties from Corin, MicroPort, Medacta; has received consultancy fees from Corin, MicroPort, MatOrtho, Zimmer Biomet; has received research support from Zimmer Biomet; has received publishing royalties from Wolters Kluwer and is a committee member for the International Society for Hip Arthroscopy. Author F has received consultancy fees from Formus Labs. The authors have no conflicts of interest to disclose that are related to the submitted work.

Ethical approval

This retrospective chart review study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Ottawa Health Science Network Research Ethics Board at The Ottawa Hospital (No. 2006856) approved this study.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGoldrick, N.P., Antoniades, S., El Meniawy, S. et al. Supine versus lateral position for total hip replacement: accuracy of biomechanical reconstruction. Arch Orthop Trauma Surg (2021). https://doi.org/10.1007/s00402-021-04179-2

Download citation

Keywords

  • Arthroplasty
  • Hip
  • Anterior approach
  • Center of rotation