Skip to main content

Immersive technologies for total knee arthroplasty surgical education


The need to adapt surgical curricula to meet the demands of an increasingly restrictive training environment is rising. Modern constraints of surgical trainees including work-hour restrictions and concerns surrounding patient safety have created an opportunity to supplement traditional teaching methods with developing immersive technologies including virtual and augmented reality. Virtual reality (VR) and augmented reality (AR) have been preliminarily investigated as it relates to total joint arthroplasty. The purpose of this article is to discuss VR and AR as it applies to modern total knee replacement (TKR) surgical education.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Laverdière C, Corban J, Khoury J, Ge SM, Schupbach J, Harvey EJ, Reindl R, Martineau PA (2019) Augmented reality in orthopaedics: a systematic review and a window on future possibilities. Bone Joint J 101-B(12):1479–1488. (PMID: 31786992)

    Article  PubMed  Google Scholar 

  2. 2.

    Keating TC, Jacobs JJ (2021) Augmented reality in orthopedic practice and education. Orthop Clin North Am 52(1):15–26. (PMID: 33222981)

    Article  PubMed  Google Scholar 

  3. 3.

    Polce EM, Kunze KN, Williams BT, Krivicich LM, Maheshwer B, Beletsky A, Cohn MR, Kogan M, Chahla J (2020) Efficacy and validity of orthopaedic simulators in surgical training: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Orthop Surg 28(24):1027–1040. (PMID: 32398408)

    Article  PubMed  Google Scholar 

  4. 4.

    Eberlein TJ (2014) A new paradigm in surgical training. J Am Coll Surg 218(4):511–518. (Epub 2014 Jan 24 PMID: 24655837)

    Article  PubMed  Google Scholar 

  5. 5.

    Harris JD, Staheli G, LeClere L, Andersone D, McCormick F (2015) What effects have resident work-hour changes had on education, quality of life, and safety? A systematic review. Clin Orthop Relat Res 473(5):1600–1608. (PMID:25269530;PMCID:PMC4385350)

    Article  PubMed  Google Scholar 

  6. 6.

    Strauss EJ, Markus DH, Kingery MT, Zuckerman J, Egol KA (2019) Orthopaedic resident burnout is associated with poor in-training examination performance. J Bone Joint Surg Am 101(19):e102. (PMID: 31577687)

    Article  PubMed  Google Scholar 

  7. 7.

    Huang GC, Smith CC, Gordon CE, Feller-Kopman DJ, Davis RB, Phillips RS, Weingart SN (2006) Beyond the comfort zone: residents assess their comfort performing inpatient medical procedures. Am J Med 119(1):71.e17–24. (PMID: 16431194)

    Article  Google Scholar 

  8. 8.

    Sloan M, Premkumar A, Sheth NP (2020) Future demand for total joint arthroplasty drives renewed interest in arthroplasty fellowship. HSS J 16(Suppl 2):210–215. (PMID: 33380948; PMCID: PMC7749885)

    Article  PubMed  Google Scholar 

  9. 9.

    Peltola M, Malmivaara A, Paavola M (2013) Learning curve for new technology?: A nationwide register-based study of 46,363 total knee arthroplasties. J Bone Joint Surg Am 95(23):2097–2103. (PMID: 24306696)

    Article  PubMed  Google Scholar 

  10. 10.

    Magill P, Blaney J, Hill JC, Bonnin MP, Beverland DE (2016) Impact of a learning curve on the survivorship of 4802 cementless total hip arthroplasties. Bone Joint J 98B(12):1589–1596. (PMID: 27909119)

    Article  Google Scholar 

  11. 11.

    Ravi B, Jenkinson R, Austin PC, Croxford R, Wasserstein D, Escott B, Paterson JM, Kreder H, Hawker GA (2014) Relation between surgeon volume and risk of complications after total hip arthroplasty: propensity score matched cohort study. BMJ 23(348):g3284. (PMID:24859902;PMCID:PMC4032026)

    CAS  Article  Google Scholar 

  12. 12.

    Manley M, Ong K, Lau E, Kurtz SM (2009) Total knee arthroplasty survivorship in the United States medicare population: effect of hospital and surgeon procedure volume. J Arthroplasty 24(7):1061–1067. (Epub 2008 Nov 1 PMID: 18977638)

    Article  PubMed  Google Scholar 

  13. 13.

    Goodman SB, Mihalko WM, Anderson PA, Sale K, Bozic KJ (2016) Introduction of new technologies in orthopaedic surgery. JBJS Rev 4(5):01874474. (PMID: 27490218)

    Article  Google Scholar 

  14. 14.

    McKnight RR, Pean CA, Buck JS, Hwang JS, Hsu JR, Pierrie SN (2020) Virtual reality and augmented reality-translating surgical training into surgical technique. Curr Rev Musculoskelet Med 13(6):663–674. (PMID:32779019;PMCID:PMC7661680)

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Poss R, Mabrey JD, Gillogly SD, Kasser JR, Sweeney HJ, Zarins B, Garrett WE Jr, Cannon WD (2000) Development of a virtual reality arthroscopic knee simulator. J Bone Joint Surg Am 82(10):1495–1499 (PMID: 11057478)

    CAS  Article  Google Scholar 

  16. 16.

    Logishetty K, Rudran B, Cobb JP (2019) Virtual reality training improves trainee performance in total hip arthroplasty: a randomized controlled trial. Bone Joint J 101-B(12):1585–1592. (PMID: 31786991)

    Article  PubMed  Google Scholar 

  17. 17.

    Hooper J, Tsiridis E, Feng JE, Schwarzkopf R, Waren D, Long WJ, Poultsides L, Macaulay W; NYU Virtual Reality Consortium (2019) Virtual reality simulation facilitates resident training in total hip arthroplasty: a randomized controlled trial. J Arthroplasty 34(10):2278–2283. (Epub 2019 Apr 8. PMID: 31056442)

    Article  Google Scholar 

  18. 18.

    Lohre R, Bois AJ, Athwal GS, Goel DP; Canadian Shoulder and Elbow Society (CSES) (2020) Improved complex skill acquisition by immersive virtual reality training: a randomized controlled trial. J Bone Joint Surg Am 102(6):e26. (PMID: 31972694)

    Article  Google Scholar 

  19. 19.

    Logishetty K, Gofton WT, Rudran B, Beaulé PE, Cobb JP (2020) Fully immersive virtual reality for total hip arthroplasty: objective measurement of skills and transfer of visuospatial performance after a competency-based simulation curriculum. J Bone Joint Surg Am 102(6):e27. (PMID: 31929324)

    Article  PubMed  Google Scholar 

  20. 20.

    Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst 77(12):1321–1329.

  21. 21.

    Casari FA, Navab N, Hruby LA, Kriechling P, Nakamura R, Tori R, Lourdes D, Santos Nunes F, Queiroz MC, Fürnstahl P, Farshad M (2021) Augmented reality in orthopedic surgery is emerging from proof of concept towards clinical studies: a literature review explaining the technology and current state of the art. Curr Rev Musculoskelet Med 14(2):192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pokhrel S, Alsadoon A, Prasad PWC et al (2019) A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. Int J Med Robot 15(1):e1958

    Article  Google Scholar 

  23. 23.

    Wang L, Sun Z, Zhang X et al (2019) A HoloLens based augmented reality navigation system for minimally invasive total knee arthroplasty. In: Yu H, Liu J, Liu L et al (eds) Intelligent robotics and applications. Springer, pp 519–530

    Chapter  Google Scholar 

  24. 24.

    Daniel C, Ramos O (2016) Augmented reality for assistance of total knee replacement. J Electrical Comput Eng 16:1–6.

    Article  Google Scholar 

  25. 25.

    Dixon BJ, Daly MJ, Chan HHLL, Vescan A, Witterick IJ, Irish JC (2014) Inattentional blindness increased with augmented reality surgical navigation. Am J Rhinol Allergy 28:433–437

    Article  Google Scholar 

  26. 26.

    Ogawa H, Kurosaka K, Sato A, Hirasawa N, Matsubara M, Tsukada S (2020) Does an augmented reality-based portable navigation system improve the accuracy of acetabular component orientation during tha? a randomized controlled trial. Clin Orthop Relat Res 478(5):935–943. (PMID:31834164;PMCID:PMC7170692)

    Article  PubMed  Google Scholar 

  27. 27.

    Logishetty K, Western L, Morgan R, Iranpour F, Cobb JP, Auvinet E (2019) Can an augmented reality headset improve accuracy of acetabular cup orientation in simulated THA? A randomized trial. Clin Orthop Relat Res 477(5):1190–1199. (PMID:30507832;PMCID:PMC6494316)

    Article  PubMed  Google Scholar 

  28. 28.

    Harrington CM, Kavanagh DO, Quinlan JF, Ryan D, Dicker P, O’Keeffe D, Traynor O, Tierney S (2018) Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. Am J Surg 215(1):42–47. (Epub 2017 Feb 10 PMID: 28262203)

    Article  PubMed  Google Scholar 

  29. 29.

    Bartlett JD, Lawrence JE, Stewart ME, Nakano N, Khanduja V (2018) Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Joint J 100B(5):559–565. (PMID: 29701089)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kyle Alpaugh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alpaugh, K., Ast, M.P. & Haas, S.B. Immersive technologies for total knee arthroplasty surgical education. Arch Orthop Trauma Surg 141, 2331–2335 (2021).

Download citation


  • Total knee arthroplasty
  • Surgical education
  • Training
  • Virtual reality
  • Augmented reality
  • Immersive technology