Skip to main content

Advertisement

Log in

Two positioned MRI can visualize and detect the location of peripheral rim instability with snapping knee in the no-shift-type of complete discoid lateral meniscus

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

We evaluated the efficacy of two positioned magnetic resonance imaging (MRI) for visualizing the snapping phenomenon and detecting peripheral rim instability (PRI) in no-shift-type complete discoid lateral meniscus (CDLM).

Materials and methods

The records of 39 patients diagnosed with no-shift-type CDLM under routine MRI who underwent arthroscopic surgery were reviewed. The snapping phenomenon and meniscal shift on two positioned MRI in full extension and deep flexion were evaluated and calculated the agreement between these findings. The positive predictive value (PPV), sensitivity, and specificity of meniscal shift on two positioned MRI for predicting PRI were calculated; PRI was further investigated according to anterior and posterior location. The hypotheses of this study were asfollows: (1) Two positioned MRI can visualize the snapping phenomenon and (2) Meniscal shift on two positioned MRI is an important predictive sign of detecting the instability site in no-shift-type CDLM.

Results

The κ values between the snapping phenomenon and meniscal shift on two positioned MRI were 0.84. The snapping and two positioned MRI findings had high PPV (1.0, 0.96), sensitivity (0.82, 0.85), and specificity (1.0, 0.91) for predicting overall PRI. For anterior PRI, the snapping and posterior shift on two positioned MRI had moderate and high PPV (0.78, 0.9), high sensitivity (0.9, 0.9), and specificity (0.8, 0.89). The anterior shift on two positioned MRI findings predicted posterior PRI with high PPV (1.0) and specificity (1.0).

Conclusions

Two positioned MRI visualized the snapping phenomenon. Meniscal shift on two positioned MRI was an important predictive sign of overall PRI, anterior PRI, and posterior PRI in no-shift-type CDLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watanabe M, Takeda S, Ikeuchi H (1978) Atlas of arthroscopy. Igaku-Shoin, Tokyo

    Google Scholar 

  2. Smillie IS (1948) The congenital discoid meniscus. J Bone Joint Surg Br 30:671–682

    Article  Google Scholar 

  3. Restrepo R, Weisberg MD, Pevsner R, Swirsky S, Lee EY (2019) Discoid meniscus in the pediatric population: emphasis on MR imaging signs of instability. Magn Reson Imaging Clin N Am 27:323–339

    Article  Google Scholar 

  4. Kramer DE, Micheli LJ (2009) Meniscal tears and discoid meniscus in children: diagnosis and treatment. J Am Acad Orthop Surg 17:698–707

    Article  Google Scholar 

  5. Good CR, Green DW, Griffith MH et al (2007) Arthroscopic treatment of symptomatic discoid meniscus in children: classification, technique, and results. Arthroscopy 23:157–163

    Article  Google Scholar 

  6. Atay OA, Pekmezci M, Doral MN et al (2007) Discoid meniscus: an ultrastructural study with transmission electron microscopy. Am J Sports Med 35:475–478

    Article  Google Scholar 

  7. Cui JH, Min B-H (2007) Collagenous fibril texture of the discoid lateral meniscus. Arthroscopy 23:635–641

    Article  CAS  Google Scholar 

  8. Papadopoulos A, Kirkos JM, Kapetanos GA (2009) Histomorphologic study of discoid meniscus. Arthroscopy 25:262–268

    Article  Google Scholar 

  9. Klingele KE, Kocher MS, Hresko MT et al (2004) Discoid lateral meniscus: prevalence of peripheral rim instability. J Pediatr Orthop 24:79–82

    Article  Google Scholar 

  10. Aichroth PM, Patel DV, Marx CL (1991) Congenital discoid lateral meniscus in children. A follow-up study and evolution of management. J Bone Joint Surg Br 73:932–936

    Article  CAS  Google Scholar 

  11. Pellacci F, Montanari G, Prosperi P, Galli G, Celli V (1992) Lateral discoid meniscus: treatment and results. Arthroscopy 8:526–530

    Article  CAS  Google Scholar 

  12. Ahn JH, Lee YS, Ha HC et al (2009) A novel magnetic resonance imaging classification of discoid lateral meniscus based on peripheral attachment. Am J Sports Med 37:1564–1569

    Article  Google Scholar 

  13. Yoo WJ, Lee K, Moon HJ et al (2012) Meniscal morphologic changes on magnetic resonance imaging are associated with symptomatic discoid lateral meniscal tear in children. Arthroscopy 28:330–336

    Article  Google Scholar 

  14. Yamasaki S, Hashimoto Y, Takigami J et al (2017) Risk factors associated with knee joint degeneration after arthroscopic reshaping for juvenile discoid lateral meniscus. Am J Sports Med 45:570–577

    Article  Google Scholar 

  15. Kang MS, Kim JM, Park SS, Bin SI (2019) Prediction of the peripheral rim instability of the discoid lateral meniscus in children by using preoperative clinicoradiological factors. J Pediatr Orthop 39:e761–e768

    Article  Google Scholar 

  16. Yoo WJ, Choi IH, Chung CY et al (2008) Discoid lateral meniscus in children: limited knee extension and meniscal instability in the posterior segment. J Pediatr Orthop 28:544–548

    Article  Google Scholar 

  17. Hashimoto Y, Kazuya N, Takigami J, Yamasaki S, Tomihara T, Shimada N, Nakamura H (2020) Abnormal displacement of discoid lateral meniscus with snapping knee detected by full extension and deep flexion MRI: report of two cases. Asia Pac J Sports Med Arthrosc Rehabil Technol 10(21):1–4

    Google Scholar 

  18. Nakagawa S, Kadoya Y, Kobayashi A, Tatsumi I, Nishida N, Yamano Y (2003) Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging. J Bone Joint Surg Am 85:1238–1242

    Article  CAS  Google Scholar 

  19. Komatsu T, Kadoya Y, Nakagawa S, Yoshida G, Takaoka K (2005) Movement of the posterior cruciate ligament during knee flexion–MRI analysis. J Orthop Res 23:334–339

    Article  Google Scholar 

  20. Logan M, Dunstan E, Robinson J, Williams A, Gedroyc W, Freeman M (2004) Tibiofemoral kinematics of the anterior cruciate ligament (ACL)-deficient weightbearing, living knee employing vertical access open “interventional” multiple resonance imaging. Am J Sports Med 32:720–726

    Article  Google Scholar 

  21. Kim E, Kim YJ, Cha JG, Kim MY, Lee DH, Cho SG, Kim RS (2015) Kinematic change of the meniscus and the tibiofemoral joint space in asymptomatic volunteers using a wide bore 3T closed MRI system. Skeletal Radiol 44:1441–1451

    Article  Google Scholar 

  22. Moser MW, Dugas J, Hartzell J et al (2007) A hypermobile Wrisberg variant lateral discoid meniscus seen on MRI. Clin Orthop 456:264–267

    Article  Google Scholar 

  23. Kim JH, Ahn JH, Kim JH, Wang JH (2020) Discoid lateral meniscus: importance, diagnosis, and treatment. J Exp Orthop. 7(1):81

    Article  Google Scholar 

  24. Yue BW, Gupta AK, Moorman CT 3rd, Garrett WE, Helms CA (2011) Wrisberg variant of the discoid lateral meniscus with flipped meniscal fragments simulating bucket-handle tear: MRI and arthroscopic correlation. Skeletal Radiol 40:1089–1094

    Article  Google Scholar 

  25. Harato K, Niki Y, Nagashima M, Masumoto K, Otani T, Toyama Y, Suda Y (2015) Ascopy arthroscopic visualization of abnormal movement of discoid lateral meniscus with snapping phenomenon. Arthrosc Tech 4(3):e235–e238

    Article  Google Scholar 

  26. Marchand AJ, Proisy M, Ropars M, Cohen M, Duvauferrier R, Guillin R (2012) Snapping knee: imaging finding with an emphasis on dynamic sonography. Am J Roentgenol 199(1):142–150

    Article  Google Scholar 

  27. Tamai K, Buser Z, Paholpak P, Sessumpun K, Hsieh PC, Nakamura H, Wang JC (2018) MRI kinematic analysis of T1 sagittal motion between cervical flexion and extension positions in 145 patients. Eur Spine J 27(5):1034–1041

    Article  Google Scholar 

  28. Paholpak P, Shah I, Acevedo-Moreno LA, Tamai K, Buser Z, Wang JC (2019) Thoracic spine disc degeneration, translation, and angular motion: an analysis using thoracic spine kinematic MRI (kMRI). J Clin Neurosci 66:113–120

    Article  Google Scholar 

  29. Jin B, Zhen J, Wei X, Zhou Y, Bian W, Yang J, Fan ZJ (2020) Evaluation of the peripheral rim instability of the discoid meniscus in children by using weight-bearing magnetic resonance imaging. Comput Assist Tomogr. https://doi.org/10.1097/RCT.0000000000001122

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jane Charbonneau, DVM, from Edanz Group (https://en-authorservices.edanzgroup.com/) for editing a draft of this manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YH: Conception and design. Drafting of the article. KN: Drafting of the article, and acquisition of the data. SY: revised the work critically for important intellectual content. YN: Interpretation of data. ST: analysis of the data. HN: Conception and design, final approval of the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yusuke Hashimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional Review Board/Ethics Committee approval number: 2968.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (WMV 6422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, Y., Nishino, K., Yamasaki, S. et al. Two positioned MRI can visualize and detect the location of peripheral rim instability with snapping knee in the no-shift-type of complete discoid lateral meniscus. Arch Orthop Trauma Surg 142, 1971–1977 (2022). https://doi.org/10.1007/s00402-021-04148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04148-9

Keywords

Navigation