Skip to main content

Advertisement

Log in

The effect of gastrocnemius resection on knee flexion in a total knee arthroplasty model

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Flexion contracture in knee arthritis and total knee arthroplasty (TKA) is a common and significant problem. An improvement in knee extension in patients with TKA and mild flexion contractures has been observed clinically when a gastrocnemius recession was performed for other concomitant conditions. The goal of this study was to quantify the effect of gastrocnemius recession on knee flexion in TKA cadaver model.

Materials and methods

Range of motion (ROM) of 23 cadaveric knees was determined with a navigation system before and after performing TKA using a medial parapetallar approach and after performing a gastrocnemius recession. Varus-valgus, flexion–extension, and internal–external rotation angles of the knee joint were recorded with leg in full extension and in 90°of knee flexion. Extension and flexion gaps were measured using a gap tensioning device. Dorsiflexion of the foot was measured with a goniometer when a torque moment of 10 Nm was applied to the ankle joint.

Results

A statistically significant improvement of 5° in knee extension was observed following gastrocnemius recession (P = 0.015). Varus and valgus angles, internal, and external rotation were unaffected by gastrocnemius recession. Ankle dorsiflexion increased by 9° following gastrocnemius recession (P ≤ 0.001).

Conclusions

Performing a gastrocnemius recession improves the knee extension in TKA knees with flexion contractures. Gastrocnemius recession may be a useful technique to improve terminal extension in TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arampatzis A, Karamanidis K, Stafilidis S, Morey-Klapsing G, DeMonte G, Bruggemann GP (2006) Effect of different ankle- and knee-joint positions on gastrocnemius medialis fascicle length and EMG activity during isometric plantar flexion. J Biomech 39(10):1891–1902

    Article  PubMed  Google Scholar 

  2. Attias M, Bonnefoy-Mazure A, De Coulon G, Cheze L, Armand S (2017) Influence of different degrees of bilateral emulated contractures at the triceps surae on gait kinematics: the difference between gastrocnemius and soleus. Gait Posture 58:176–182

    Article  CAS  PubMed  Google Scholar 

  3. Barske HL, DiGiovanni BF, Douglass M, Nawoczenski DA (2012) Current concepts review: isolated gastrocnemius contracture and gastrocnemius recession. Foot Ankle Int 33(10):915–921

    Article  PubMed  Google Scholar 

  4. Baumann JU, Koch HG (1989) Ventrale aponeurotische Verlängerung des Musculus gastrocnemius. Operative Orthopädie und Traumatologie 1(4):254–258

    Article  Google Scholar 

  5. Baumbach SF, Brumann M, Binder J, Mutschler W, Regauer M, Polzer H (2014) The influence of knee position on ankle dorsiflexion—a biometric study. BMC Musculoskelet Disord 15:246

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bellemans J, Vandenneucker H, Victor J, Vanlauwe J (2006) Flexion contracture in total knee arthroplasty. Clin Orthop Relat Res 452:78–82

    Article  PubMed  Google Scholar 

  7. Bolivar YA, Munuera PV, Padillo JP (2013) Relationship between tightness of the posterior muscles of the lower limb and plantar fasciitis. Foot Ankle Int 34(1):42–48

    Article  PubMed  Google Scholar 

  8. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63

    Article  PubMed  Google Scholar 

  9. Chaiyakit P, Meknavin S, Hongku N (2009) Effects of posterior cruciate ligament resection in total knee arthroplasty using computer assisted surgery. J Med Assoc Thai 92(Suppl 6):S80-84

    PubMed  Google Scholar 

  10. Chimera NJ, Castro M, Manal K (2010) Function and strength following gastrocnemius recession for isolated gastrocnemius contracture. Foot Ankle Int 31(5):377–384

    Article  PubMed  Google Scholar 

  11. Didomenico L, Stein DY, Wargo-Dorsey M (2011) Treatment of posterior tibial tendon dysfunction without flexor digitorum tendon transfer: a retrospective study of 34 patients. J Foot Ankle Surg 50(3):293–298

    Article  PubMed  Google Scholar 

  12. DiGiovanni CW, Kuo R, Tejwani N et al (2002) Isolated gastrocnemius tightness. J Bone Joint Surg Am 84-A(6):962–970

    Article  Google Scholar 

  13. Duthon VB, Lubbeke A, Duc SR, Stern R, Assal M (2011) Noninsertional Achilles tendinopathy treated with gastrocnemius lengthening. Foot Ankle Int 32(4):375–379

    Article  PubMed  Google Scholar 

  14. Fehring TK, Odum SM, Griffin WL, McCoy TH, Masonis JL (2007) Surgical treatment of flexion contractures after total knee arthroplasty. J Arthroplasty 22(6 Suppl 2):62–66

    Article  PubMed  Google Scholar 

  15. Fischer B, Kurz S, Höch A, Schleifenbaum S (2020) The influence of different sample preparation on mechanical properties of human iliotibial tract. Sci Rep 10(1):14836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flaxman TE, Alkjaer T, Simonsen EB, Krogsgaard MR, Benoit DL (2017) Predicting the functional roles of knee joint muscles from internal joint moments. Med Sci Sports Exerc 49(3):527–537

    Article  PubMed  Google Scholar 

  17. Gatt A, Chockalingam N (2013) Validity and reliability of a new ankle dorsiflexion measurement device. Prosthet Orthot Int 37(4):289–297

    Article  PubMed  Google Scholar 

  18. Gentchos CE, Bohay DR, Anderson JG (2008) Gastrocnemius recession as treatment for refractory achilles tendinopathy: a case report. Foot Ankle Int 29(6):620–623

    Article  PubMed  Google Scholar 

  19. Goudie ST, Deakin AH, Ahmad A, Maheshwari R, Picard F (2011) Flexion contracture following primary total knee arthroplasty: risk factors and outcomes. Orthopedics 34(12):e855-859

    Article  PubMed  Google Scholar 

  20. Greenhagen RM, Johnson AR, Peterson MC, Rogers LC, Bevilacqua NJ (2010) Gastrocnemius recession as an alternative to tendoAchillis lengthening for relief of forefoot pressure in a patient with peripheral neuropathy: a case report and description of a technical modification. J Foot Ankle Surg 49(2):159e9-159e13

    Article  Google Scholar 

  21. Gurdezi S, Kohls-Gatzoulis J, Solan MC (2013) Results of proximal medial gastrocnemius release for Achilles tendinopathy. Foot Ankle Int 34(10):1364–1369

    Article  PubMed  Google Scholar 

  22. Herzenberg JE, Lamm BM, Corwin C, Sekel J (2007) Isolated recession of the gastrocnemius muscle: the Baumann procedure. Foot Ankle Int 28(11):1154–1159

    Article  PubMed  Google Scholar 

  23. Hohmann E, Keough N, Glatt V, Tetsworth K, Putz R, Imhoff A (2019) The mechanical properties of fresh versus fresh/frozen and preserved (Thiel and Formalin) long head of biceps tendons: A cadaveric investigation. Ann Anat 221:186–191

    Article  PubMed  Google Scholar 

  24. Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BRJ (2017) What Factors Influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review. Clin Orthop Relat Res 475(10):2412–2426

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li L, Landin D, Grodesky J, Myers J (2002) The function of gastrocnemius as a knee flexor at selected knee and ankle angles. J Electromyogr Kinesiol 12(5):385–390

    Article  PubMed  Google Scholar 

  26. Maskill JD, Bohay DR, Anderson JG (2010) Gastrocnemius recession to treat isolated foot pain. Foot Ankle Int 31(1):19–23

    Article  PubMed  Google Scholar 

  27. Mihalko WM, Krackow KA (1999) Posterior cruciate ligament effects on the flexion space in total knee arthroplasty. Clin Orthop Relat Res 360:243–250

    Article  Google Scholar 

  28. Munteanu SE, Strawhorn AB, Landorf KB, Bird AR, Murley GS (2009) A weightbearing technique for the measurement of ankle joint dorsiflexion with the knee extended is reliable. J Sci Med Sport 12(1):54–59

    Article  PubMed  Google Scholar 

  29. Park SJ, Seon JK, Park JK, Song EK (2009) Effect of PCL on flexion-extension gaps and femoral component decision in TKA. Orthopedics 32(10 Suppl):22–25

    Article  PubMed  Google Scholar 

  30. Pinney SJ, Hansen ST Jr, Sangeorzan BJ Jr (2002) The effect on ankle dorsiflexion of gastrocnemius recession. Foot Ankle Int 23(1):26–29

    Article  PubMed  Google Scholar 

  31. Rong K, Li XC, Ge WT, Xu Y, Xu XY (2016) Comparison of the efficacy of three isolated gastrocnemius recession procedures in a cadaveric model of gastrocnemius tightness. Int Orthop 40(2):417–423

    Article  PubMed  Google Scholar 

  32. Sammarco GJ, Bagwe MR, Sammarco VJ, Magur EG (2006) The effects of unilateral gastrocsoleus recession. Foot Ankle Int 27(7):508–511

    Article  PubMed  Google Scholar 

  33. Saxena A, Widtfeldt A (2004) Endoscopic gastrocnemius recession: preliminary report on 18 cases. J Foot Ankle Surg 43(5):302–306

    Article  PubMed  Google Scholar 

  34. Schiavone Panni A, Cerciello S, Vasso M, Tartarone M (2009) Stiffness in total knee arthroplasty. J Orthop Traumatol 10(3):111–118

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schnurr C, Eysel P, Konig DP (2012) Is the effect of a posterior cruciate ligament resection in total knee arthroplasty predictable? Int Orthop 36(1):83–88

    Article  PubMed  Google Scholar 

  36. Scuderi GR, Kochhar T (2007) Management of flexion contracture in total knee arthroplasty. J Arthroplasty 22(4 Suppl 1):20–24

    Article  PubMed  Google Scholar 

  37. Thevendran G, Howe LB, Kaliyaperumal K, Fang C (2015) Endoscopic gastrocnemius recession procedure using a single portal technique: a prospective study of fifty four consecutive patients. Int Orthop 39(6):1099–1107

    Article  PubMed  Google Scholar 

  38. Trevino S, Gibbs M, Panchbhavi V (2005) Evaluation of results of endoscopic gastrocnemius recession. Foot Ankle Int 26(5):359–364

    Article  PubMed  Google Scholar 

  39. Van Ee CA, Chasse AL, Myers BS (1999) Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng 122(1):9–14

    Google Scholar 

  40. Vinagre G, Alfonso M, Cruz-Morande S, Hernández M, Villas C (2017) Efficacy of pedobarographic analysis to evaluate proximal medial gastrocnemius recession in patients with gastrocnemius tightness and metatarsalgia. Int Ortho 41(11):2281–2287

    Article  Google Scholar 

  41. You JY, Lee HM, Luo HJ, Leu CC, Cheng PG, Wu SK (2009) Gastrocnemius tightness on joint angle and work of lower extremity during gait. Clin Biomech (Bristol, Avon) 24(9):744–750

    Article  Google Scholar 

Download references

Acknowledgements

Cadavers and equipment were sponsored by DJO Global (DJO, LLC, Vista, CA-US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Rocco.

Ethics declarations

Conflict of interest

Jeffrey Rocco and Paul Maitino are paid consultants of DJO Global. Michael Nogler received research support and royalties from DJO Global. Martin Thaler, Paul Maitino and Michael Nogler are paid speakers for DJO Global. Michal Nogler is a paid speaker for Stryker. There are no other conflicts of interest to declare.

Ethical approval

This article does not contain any studies with living human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocco, J., Putzer, D., Nogler, M. et al. The effect of gastrocnemius resection on knee flexion in a total knee arthroplasty model. Arch Orthop Trauma Surg 142, 2503–2511 (2022). https://doi.org/10.1007/s00402-020-03695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-020-03695-x

Keywords

Navigation