Skip to main content

Advertisement

Log in

Extracorporal shock wave therapy for the treatment of arthrodesis non-unions

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Non-union is a regular complication of arthrodeses. Standard treatment includes revision surgery with frequent need for re-revision due to persistent non-union. Particularly patients with concomitant diseases are at risk of secondary complications. There is a need for evaluation of alternative treatment options. The aim of this study is to provide first evidence on union-rate and pain course after focussed extracorporeal shock-wave therapy of arthrodesis non-unions.

Patients and methods

In a retrospective single-centre study, 25 patients with non-union following arthrodesis received one session of focussed extracorporeal shock-wave therapy (energy flux density 0.36 mJ/mm2, 3000 impulses, 23 kV, 4 Hz). Radiographic and clinical results were recorded 6, 12 and 24 weeks after treatment.

Results

24 patients were followed-up. After 24 weeks arthrodeses of the hand healed in 80%, of the upper ankle in 50%, of subtalar joint in 27.2% and of the midfoot in 0% of the cases. Pain decreased from 4.8 (± 2.8) points on the visual analogue scale to 3.4 (± 2.3), 2.9 (± 2.5) and 2.4 (± 2.8) points after 6, 12 and 24 weeks, respectively (p < 0.0001).

Conclusion

Our data indicate that the effect of focussed, high-energy shock wave therapy depends on body region and is effective for the treatment of non-unions of the hand as well as for pain relief.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cook JJ, Summers NJ, Cook EA (2015) Healing in the new millennium: bone stimulators: an overview of where we’ve been and where we may be heading. Clin Podiatr Med Surg 32:45–59. https://doi.org/10.1016/j.cpm.2014.09.003

    Article  PubMed  Google Scholar 

  2. Dujela M, Hyer CF, Berlet GC (2017) Rate of subtalar joint arthrodesis after retrograde tibiotalocalcaneal arthrodesis with intramedullary nail fixation: evaluation of the RAIN database. Foot Ankle Spec 463:1938640017740674. https://doi.org/10.1177/1938640017740674

    Article  Google Scholar 

  3. Zanolli DH, Nunley JA, Easley ME (2015) Subtalar fusion rate in patients with previous ipsilateral ankle arthrodesis. Foot Ankle Int 36:1025–1028. https://doi.org/10.1177/1071100715584014

    Article  PubMed  Google Scholar 

  4. Dickson DR, Mehta SS, Nuttall D, Ng CY (2014) A systematic review of distal interphalangeal joint arthrodesis. J Hand Microsurg 6:74–84. https://doi.org/10.1007/s12593-014-0163-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson JT, Schuberth JM, Thornton SD, Christensen JC (2009) Joint curettage arthrodesis technique in the foot: a histological analysis. J Foot Ankle Surg 48:558–564. https://doi.org/10.1053/j.jfas.2009.05.008

    Article  PubMed  Google Scholar 

  6. Charnley J, Baker SL (1952) Compression arthrodesis of the knee: a clinical and histological study. J Bone Joint Surg Br 34-B:187–199

    Article  CAS  Google Scholar 

  7. Thevendran G, Shah K, Pinney SJ, Younger AS (2017) Perceived risk factors for nonunion following foot and ankle arthrodesis. J Orthop Surg (Hong Kong) 25:2309499017692703. https://doi.org/10.1177/2309499017692703

    Article  Google Scholar 

  8. Myerson M, Li S, Taghavi C, Tracey T (2016) Management of nonunion following subtalar arthrodesis: an analysis of the methods of revision surgery, and the risk factors in achieving arthrodesis. Bone Joint J 98-B:21

    Article  Google Scholar 

  9. Easley ME, Montijo HE, Wilson JB et al (2008) Revision tibiotalar arthrodesis. J Bone Joint Surg Am 90:1212–1223. https://doi.org/10.2106/JBJS.G.00506

    Article  PubMed  Google Scholar 

  10. Everding J, Freistühler M, Stolberg-Stolberg JA et al (2016) Extracorporal shock wave therapy for the treatment of pseudarthrosis: new experiences with an old technology. 120:1–10. https://doi.org/10.1007/s00113-016-0238-5

    Article  Google Scholar 

  11. Haffner N, Antonic V, Smolen D et al (2016) Extracorporeal shockwave therapy (ESWT) ameliorates healing of tibial fracture non-union unresponsive to conventional therapy. Injury 47:1506–1513. https://doi.org/10.1016/j.injury.2016.04.010

    Article  PubMed  Google Scholar 

  12. Cacchio A, Giordano L, Colafarina O et al (2009) Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am 91:2589–2597. https://doi.org/10.2106/JBJS.H.00841

    Article  PubMed  Google Scholar 

  13. Notarnicola A, Moretti L, Tafuri S et al (2010) Extracorporeal shockwaves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid. Ultrasound Med Biol 36:1306–1313. https://doi.org/10.1016/j.ultrasmedbio.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  14. Furia JP, Juliano PJ, Wade AM et al (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 92:846–854. https://doi.org/10.2106/JBJS.I.00653

    Article  PubMed  Google Scholar 

  15. Stojadinovic A, Kyle Potter B, Eberhardt J et al (2011) Development of a prognostic naive bayesian classifier for successful treatment of nonunions. J Bone Joint Surg Am 93:187–194. https://doi.org/10.2106/JBJS.I.01649

    Article  PubMed  Google Scholar 

  16. Ogden JA, Tóth-Kischkat A, Schultheiss R (2001) Principles of shock wave therapy. Clin Orthop Relat Res 387:8–17

    Article  Google Scholar 

  17. Xu J-K, Chen H-J, Li X-D et al (2012) Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem 287:26200–26212. https://doi.org/10.1074/jbc.M112.349811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang FS, Yang KD, Chen RF et al (2002) Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint Surg Br 84:457–461

    Article  CAS  Google Scholar 

  19. Maier M, Averbeck B, Milz S et al (2003) Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res. https://doi.org/10.1097/01.blo.0000030173.56585.8f

    Article  PubMed  Google Scholar 

  20. Hausdorf J, Lemmens MAM, Kaplan S et al (2008) Extracorporeal shockwave application to the distal femur of rabbits diminishes the number of neurons immunoreactive for substance P in dorsal root ganglia L5. Brain Res 1207:96–101. https://doi.org/10.1016/j.brainres.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  21. Mittermayr R, Pusch M, Schwab C, Fischer A Moreira Jr Editora|RBM Revista Brasileira de Medicina. moreirajr.com.br

  22. Calori GM, Phillips M, Jeetle S et al (2008) Classification of non-union: need for a new scoring system? Injury 39(Suppl 2):S59–S63. https://doi.org/10.1016/S0020-1383(08)70016-0

    Article  PubMed  Google Scholar 

  23. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54. https://doi.org/10.1038/nrrheum.2014.164

    Article  PubMed  Google Scholar 

  24. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res S7–21

  25. Wang FS, Wang C-J, Huang HJ et al (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655. https://doi.org/10.1006/bbrc.2001.5654

    Article  CAS  PubMed  Google Scholar 

  26. Wang C-J, Huang H-Y, Pai C-H (2002) Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg 41:16–22

    Article  CAS  Google Scholar 

  27. Wang FS, Yang KD, Kuo Y-R et al (2003) Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32:387–396

    Article  CAS  Google Scholar 

  28. Wang C-J, Wang F-S, Yang KD (2008) Biological effects of extracorporeal shockwave in bone healing: a study in rabbits. Arch Orthop Trauma Surg 128:879–884. https://doi.org/10.1007/s00402-008-0663-1

    Article  PubMed  Google Scholar 

  29. Park SH, O’Connor K, Sung R et al (1999) Comparison of healing process in open osteotomy model and closed fracture model. J Orthop Trauma 13:114–120

    Article  CAS  Google Scholar 

  30. Klein M, Stieger A, Stenger D et al (2015) Comparison of healing process in open osteotomy model and open fracture model: delayed healing of osteotomies after intramedullary screw fixation. J Orthop Res 33:971–978. https://doi.org/10.1002/jor.22861

    Article  PubMed  Google Scholar 

  31. Stern PJ, Fulton DB (1992) Distal interphalangeal joint arthrodesis: an analysis of complications. J Hand Surg Am 17:1139–1145

    Article  CAS  Google Scholar 

  32. Levine SE, Myerson MS, Lucas P, Schon LC (1997) Salvage of pseudoarthrosis after tibiotalar arthrodesis. Foot Ankle Int 18:580–585. https://doi.org/10.1177/107110079701800910

    Article  CAS  PubMed  Google Scholar 

  33. Kirkpatrick JS, Goldner JL, Goldner RD (1991) Revision arthrodesis for tibiotalar pseudarthrosis with fibular onlay-inlay graft and internal screw fixation. Clin Orthop Relat Res (268):29–36

  34. Easley ME, Trnka HJ, Schon LC, Myerson MS (2000) Isolated subtalar arthrodesis. J Bone Joint Surg Am 82:613–624

    Article  CAS  Google Scholar 

  35. Zarutsky E, Rush SM, Schuberth JM (2005) The use of circular wire external fixation in the treatment of salvage ankle arthrodesis. J Foot Ankle Surg 44:22–31. https://doi.org/10.1053/j.jfas.2004.11.004

    Article  PubMed  Google Scholar 

  36. Wang C-J, Chen HS, Chen CE, Yang KD (2001) Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res (387):95–101

  37. Alvarez RG, Cincere B, Channappa C et al (2011) Extracorporeal shock wave treatment of non- or delayed union of proximal metatarsal fractures. Foot Ankle Int 32:746–754. https://doi.org/10.3113/FAI.2011.0746

    Article  PubMed  Google Scholar 

  38. Quadlbauer S, Pezzei C, Beer T et al (2019) Treatment of scaphoid waist nonunion by one, two headless compression screws or plate with or without additional extracorporeal shockwave therapy. Arch Orthop Trauma Surg 139:281–293. https://doi.org/10.1007/s00402-018-3087-6

    Article  CAS  PubMed  Google Scholar 

  39. Melzack R (1995) Folk medicine and the sensory modulation of pain. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh, pp 1209–1217

    Google Scholar 

  40. Takahashi N, Wada Y, Ohtori S et al (2003) Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci 107:81–84. https://doi.org/10.1016/S1566-0702(03)00134-6

    Article  CAS  PubMed  Google Scholar 

  41. Jones CP, Coughlin MJ, Shurnas PS (2006) Prospective CT scan evaluation of hindfoot nonunions treated with revision surgery and low-intensity ultrasound stimulation. Foot Ankle Int 27:229–235. https://doi.org/10.1177/107110070602700401

    Article  PubMed  Google Scholar 

  42. Midis N, Conti SF (2016) Revision ankle arthrodesis. Foot Ankle Int 23:243–247. https://doi.org/10.1177/107110070202300309

    Article  Google Scholar 

  43. Saltzman C, Lightfoot A, Amendola A (2004) PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int 25:771–773. https://doi.org/10.1177/107110070402501102

    Article  PubMed  Google Scholar 

  44. Bassett CAL, Mitchell SN, Gaston SR (1982) Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 247:623–628. https://doi.org/10.1001/jama.1982.03320300027017

    Article  CAS  PubMed  Google Scholar 

  45. Zura R, Rocca Della GJ, Mehta S et al (2015) Treatment of chronic (> 1 year) fracture nonunion: heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS). Injury 46:2036–2041. https://doi.org/10.1016/j.injury.2015.05.042

    Article  PubMed  Google Scholar 

  46. Buckley RE (2018) Aseptic nonunion. In: Buckley R, Moran C (eds) AO principles of fracture management, vol 2, 3rd edn. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  47. Alkhawashki HMI (2015) Shock wave therapy of fracture nonunion. Injury 46:2248–2252. https://doi.org/10.1016/j.injury.2015.06.035

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank PD Dr. Patric Garcia for initiation of structured study and follow-up of patients treated with fESWT. Furthermore, we thank Dr. Britta Wieskötter for the cooperation and advice for patients with non-unions of the hand and Dr. Moritz Freistühler for the calculation of the treatment costs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Everding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everding, J., Stolberg-Stolberg, J., Pützler, J. et al. Extracorporal shock wave therapy for the treatment of arthrodesis non-unions. Arch Orthop Trauma Surg 140, 1191–1200 (2020). https://doi.org/10.1007/s00402-020-03361-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-020-03361-2

Keywords

Navigation