Skip to main content

Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction

Abstract

Purpose

To analyze the contribution of increased lateral (LTPS) and medial tibial slopes (MTPS) as independent risk factors of graft failure following anterior cruciate ligament (ACL) reconstruction.

Materials and methods

Fifty-seven patients with graft failure after ACL reconstruction who underwent revision surgery between 2009 and 2014 were enrolled and matched to a control group of 69 patients with primary anatomic successful ACL reconstruction. Patients were matched based on age, sex, date of primary surgery and graft type. LTPS and MTPS were measured on MRI in a blinded fashion. Tibial and femoral tunnel positions were determined on CT scans. Independent t test was used to compare the MTPS and LTPS between subgroups. Risks of graft failure associated with an increasing MTPS and LTPS were analyzed using binary logistic analysis.

Results

The means of LTPS (7.3°) and MTPS (6.7°) in the graft failure group were found to be significantly greater than in the control group (4.6° and 4.1°, respectively; p = < 0.001). Non-anatomic and anatomic tunnel positions were found in 42 cases (73.7%) and 15 cases (26.3%), respectively. There were no significant differences in MTPS or LTPS between patients with anatomic and non-anatomic tunnel positions within the graft failure group. An increase of the MTPS of 1° was associated with an 1.24 times increased likelihood of exhibiting graft failure [95% CI 1.07–1.43] (p = 0.003) and an increase of the LTPS of 1° was associated with an 1.17 times increased likelihood of exhibiting graft failure [95% CI 1.04–1.31] (p = 0.009). The increased risk was most evident in patients with a lateral tibial posterior slope of ≥ 10°.

Conclusions

Increased LTPS and MTPS are independent risk factors for graft failure following ACL reconstruction regardless whether tunnel position is anatomic or non-anatomic. This information may be helpful to clinicians when considering slope correction in selected revision ACL reconstruction procedures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S (2014) 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med 42(3):675–680

    Article  PubMed  Google Scholar 

  2. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42(10):2363–2370

    Article  PubMed  Google Scholar 

  3. Granan LP, Bahr R, Steindal K, Furnes O, Engebretsen L (2008) Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med 36(2):308–315

    Article  PubMed  Google Scholar 

  4. Lind M, Menhert F, Pedersen AB (2009) The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17(2):117–124

    Article  Google Scholar 

  5. Shafizadeh S, Jaecker V, Otchwemah R, Banerjee M, Naendrup JH (2016) Current status of ACL reconstruction in Germany. Arch Orthop Trauma Surg 136(5):593–603

    Article  PubMed  Google Scholar 

  6. Brophy RH, Haas AK, Huston LJ, Nwosu SK, Group M, Wright RW (2015) Association of meniscal status, lower extremity alignment, and body mass index with chondrosis at revision anterior cruciate ligament reconstruction. Am J Sports Med 43(7):1616–1622

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sward P, Kostogiannis I, Roos H (2010) Risk factors for a contralateral anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(3):277–291

    Article  Google Scholar 

  8. Evans KN, Kilcoyne KG, Dickens JF, Rue JP, Giuliani J, Gwinn D, Wilckens JH (2012) Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(8):1554–1559

    Article  Google Scholar 

  9. Kamath GV, Redfern JC, Greis PE, Burks RT (2011) Revision anterior cruciate ligament reconstruction. Am J Sports Med 39(1):199–217

    Article  PubMed  Google Scholar 

  10. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44:1861–1876

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 21(8):948–957

    Article  Google Scholar 

  12. Shah AA, McCulloch PC, Lowe WR (2010) Failure rate of Achilles tendon allograft in primary anterior cruciate ligament reconstruction. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 26(5):667–674

    Article  Google Scholar 

  13. Snow M, Campbell G, Adlington J, Stanish WD (2010) Two to five year results of primary ACL reconstruction using doubled tibialis anterior allograft. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(10):1374–1378

    Article  Google Scholar 

  14. Lind M, Menhert F, Pedersen AB (2012) Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med 40(7):1551–1557

    Article  PubMed  Google Scholar 

  15. Larson CM, Bedi A, Dietrich ME, Swaringen JC, Wulf CA, Rowley DM, Giveans MR (2017) Generalized hypermobility, knee hyperextension, and outcomes after anterior cruciate ligament reconstruction: prospective, case–control study with mean 6 years follow-up. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 33:1852–1858

    Article  Google Scholar 

  16. Mohan R, Webster KE, Johnson NR, Stuart MJ, Hewett TE, Krych AJ (2017) Clinical outcomes in revision anterior cruciate ligament reconstruction: a meta-analysis. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 34(1):289–300

    Article  Google Scholar 

  17. Andernord D, Bjornsson H, Petzold M, Eriksson BI, Forssblad M, Karlsson J, Samuelsson K (2014) Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: results from the Swedish National Knee Ligament Register on 13,102 patients. Am J Sports Med 42(7):1574–1582

    Article  PubMed  Google Scholar 

  18. Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, Feeley BT (2013) Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41(7):1571–1578

    Article  PubMed  Google Scholar 

  19. Trojani C, Sbihi A, Djian P, Potel JF, Hulet C, Jouve F, Bussiere C, Ehkirch FP, Burdin G, Dubrana F, Beaufils P, Franceschi JP, Chassaing V, Colombet P, Neyret P (2011) Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 19(2):196–201

    Article  Google Scholar 

  20. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21 (4):804–815

    Article  Google Scholar 

  21. Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W, Li YS, Xu M, Lei GH (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22:53–65

    Article  Google Scholar 

  22. Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: a systematic review and meta-analysis. Am J Sports Med 40(7):1673–1681

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62

    Article  PubMed  Google Scholar 

  24. Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res 469(8):2377–2384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dare DM, Fabricant PD, McCarthy MM, Rebolledo BJ, Green DW, Cordasco FA, Jones KJ (2015) Increased lateral tibial slope is a risk factor for pediatric anterior cruciate ligament injury: an MRI-based case–control study of 152 patients. Am J Sports Med 43(7):1632–1639

    Article  PubMed  Google Scholar 

  26. Wang YL, Yang T, Zeng C, Wei J, Xie DX, Yang YH, Long HZ, Xu B, Qian YX, Jiang SD, Lei GH (2017) Association between tibial plateau slopes and anterior cruciate ligament injury: a meta-analysis. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 33:1248–1259

    Article  Google Scholar 

  27. Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V (2016) Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Jt Surg Am Vol 98(12):1001–1006

    Article  Google Scholar 

  28. Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL (2015) Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med 43(10):2510–2514

    Article  PubMed  Google Scholar 

  29. Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior tibial slope and further anterior cruciate ligament injuries in the anterior cruciate ligament-reconstructed patient. Am J Sports Med 41(12):2800–2804

    Article  PubMed  Google Scholar 

  30. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382

    Article  PubMed  Google Scholar 

  31. Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A (2008) The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 21(3):205–211

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arun GR, Kumaraswamy V, Rajan D, Vinodh K, Singh AK, Kumar P, Chandrasekaran K, Santosh S, Kishore C (2016) Long-term follow up of single-stage anterior cruciate ligament reconstruction and high tibial osteotomy and its relation with posterior tibial slope. Arch Orthop Trauma Surg 136(4):505–511

    Article  PubMed  CAS  Google Scholar 

  33. Bernard M, Hertel P, Hornung H, Cierpinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21 (discussion 21–12)

    PubMed  CAS  Google Scholar 

  34. Staubli HU, Rauschning W (1994) Tibial attachment area of the anterior cruciate ligament in the extended knee position. Anatomy and cryosections in vitro complemented by magnetic resonance arthrography in vivo. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 2(3):138–146

    Article  CAS  Google Scholar 

  35. Zantop T, Wellmann M, Fu FH, Petersen W (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36(1):65–72

    Article  PubMed  Google Scholar 

  36. Sullivan JP, Matava MJ, Flanigan DC, Gao Y, Britton CL, Amendola A, Group M, Wolf BR (2012) Reliability of tunnel measurements and the quadrant method using fluoroscopic radiographs after anterior cruciate ligament reconstruction. Am J Sports Med 40(10):2236–2241

    Article  PubMed  Google Scholar 

  37. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Jt Surg Am Vol 90(12):2724–2734

    Article  Google Scholar 

  38. Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374

    Article  PubMed  CAS  Google Scholar 

  39. Group M (2013) Radiographic findings in revision anterior cruciate ligament reconstructions from the Mars cohort. J Knee Surg 26(4):239–247

    Article  Google Scholar 

  40. Diamantopoulos AP, Lorbach O, Paessler HH (2008) Anterior cruciate ligament revision reconstruction: results in 107 patients. Am J Sports Med 36(5):851–860

    Article  PubMed  Google Scholar 

  41. Garofalo R, Djahangiri A, Siegrist O (2006) Revision anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22(2):205–214

    Article  Google Scholar 

  42. Jaecker V, Zapf T, Naendrup JH, Pfeiffer T, Kanakamedala AC, Wafaisade A, Shafizadeh S (2017) High non-anatomic tunnel position rates in ACL reconstruction failure using both transtibial and anteromedial tunnel drilling techniques. Arch Orthop Trauma Surg 137(9):1293–1299

    Article  PubMed  Google Scholar 

  43. Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case–control study. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 26(7):901–906

    Article  Google Scholar 

  44. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case–control study. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 16(2):112–117

    Article  Google Scholar 

  45. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case–control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43(9):1702–1707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Jt Surg Br Vol 76(5):745–749

    Article  CAS  Google Scholar 

  47. Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res Off Publ Orthop Res Soc 29(2):223–231. https://doi.org/10.1002/jor.21242

    Article  Google Scholar 

  48. Shultz SJ, Schmitz RJ (2012) Tibial plateau geometry influences lower extremity biomechanics during landing. Am J Sports Med 40(9):2029–2036

    Article  PubMed  Google Scholar 

  49. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634

    Article  PubMed  Google Scholar 

  50. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 22(8):894–899

    Article  Google Scholar 

  51. Rahnemai-Azar AA, Abebe ES, Johnson P, Labrum J, Fu FH, Irrgang JJ, Samuelsson K, Musahl V (2016) Increased lateral tibial slope predicts high-grade rotatory knee laxity pre-operatively in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 25(4):1170–1176

    Article  Google Scholar 

  52. Tanaka M, Vyas D, Moloney G, Bedi A, Pearle AD, Musahl V (2012) What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(4):737–742

    Article  CAS  Google Scholar 

  53. Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256

    Article  PubMed  PubMed Central  Google Scholar 

  54. Beynnon BD, Hall JS, Sturnick DR, Desarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Shultz SJ, Johnson RJ, Vacek PM (2014) Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case–control analysis. Am J Sports Med 42(5):1039–1048

    Article  PubMed  Google Scholar 

  55. Dejour D, Saffarini M, Demey G, Baverel L (2015) Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 23(10):2846–2852

    Article  Google Scholar 

  56. Sonnery-Cottet B, Mogos S, Thaunat M, Archbold P, Fayard JM, Freychet B, Clechet J, Chambat P (2014) Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 42(8):1873–1880

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Shafizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional review board approval was obtained by the ethics committee of Witten/Herdecke University (IRB Number: 109/2016).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaecker, V., Drouven, S., Naendrup, JH. et al. Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction. Arch Orthop Trauma Surg 138, 1423–1431 (2018). https://doi.org/10.1007/s00402-018-2968-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-2968-z

Keywords

  • ACL revision
  • Posterior tibial slope
  • Reinjury
  • Risk factors
  • Anterior cruciate ligament
  • Tunnel position