Archives of Orthopaedic and Trauma Surgery

, Volume 138, Issue 7, pp 971–977 | Cite as

Fragility fractures of the sacrum occur in elderly patients with severe loss of sacral bone mass

  • Daniel Wagner
  • Alexander Hofmann
  • Lukas Kamer
  • Takeshi Sawaguchi
  • R. Geoff Richards
  • Hansrudi Noser
  • Dominik Gruszka
  • Pol M. Rommens
Trauma Surgery



Patients suffering from osteoporosis-associated fragility fractures of the sacrum (FFS; also termed sacral insufficiency fractures) are increasingly observed. They have typical fracture patterns with fracture lines located in the sacral ala. When treating these patients operatively, iliosacral screw loosening is not uncommon. We aimed to study the sacral bone mass in patients presenting with a FFS using 3D statistical models.

Materials and methods

3D models of averaged Hounsfield units (HU) were generated based on CT scans from 13 patients with a unilateral FFS (mean age 79.6 years; 11 females, 2 males). The control group without fractures consisted of 28 males and 32 females (mean age of 68.3 years). A virtual bone probe along the trans-sacral corridors S1 and S2 was taken.


The bone mass distribution in the fractured sacra was similar to the control group, however, with overall lower HU. Large zones of negative HU were located in the sacral ala. In the fractured sacra, the HU in the sacral ala was significantly lower on the non-injured side when comparing to the fractured side (p < 0.001) as well as compared to the non-fractured group (p < 0.001). Low bone mass was observed in sacral body S1 (40 HU) and S2 (20 HU).


The extensive area of negative HU may explain the fracture location in the sacral ala. The low HU in the sacral bodies advocates the use of trans-sacral implants or augmented iliosacral screws to enhance the strength of fracture fixation. The increased HU in the fractured ala could be explained by fracture-asssociated hemorrhage and can be used as a diagnostic tool.


Sacrum Osteoporosis Sacral insufficiency fracture Fragility fracture Pelvis Statistical model 



We acknowledge the support of Dr. Karsten Schwieger. We thank Thomas Heldstab for his technical assistance. This study was partially co-funded by the TK System of the AO Foundation (Davos, Switzerland) and Depuy Synthes (Zuchwil, Switzerland).

Compliance with ethical standards

Conflict of interest

The authors do not have any further conflicts of interests.


The anonymous use of CT data was approved by local ethics committee (Landesärztekammer Rheinland-Pfalz, Mainz, Germany) for the group with fractured sacra. The non-fractured sacra were obtained from the CT database of the AO Research Institute Davos, Davos, Switzerland, registered at the “Eidgenössischer Öffentlichkeits- und Datenschutzbeauftragter”, Bern, Switzerland. All patients agreed to anonymous research use of their CT data.


  1. 1.
    Wagner D, Ossendorf C, Gruszka D, Hofmann A, Rommens PM (2015) Fragility fractures of the sacrum: how to identify and when to treat surgically? Eur J Trauma Emerg Surg 41:349–362. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sullivan MP, Baldwin KD, Donegan DJ, Mehta S, Ahn J (2014) Geriatric fractures about the hip: divergent patterns in the proximal femur, acetabulum, and pelvis. Orthopedics 37:151–157. CrossRefPubMedGoogle Scholar
  3. 3.
    Gauthier A, Kanis JA, Jiang Y, Martin M, Compston JE, Borgström F, Cooper C, McCloskey EV (2011) Epidemiological burden of postmenopausal osteoporosis in the UK from 2010 to 2021: estimations from a disease model. Arch Osteoporos 6:179–188. CrossRefPubMedGoogle Scholar
  4. 4.
    Weber M, Hasler P, Gerber H (1993) Insufficiency fractures of the sacrum. Twenty cases and review of the literature. Spine 18:2507–2512CrossRefPubMedGoogle Scholar
  5. 5.
    Rommens PM, Hofmann A (2013) Comprehensive classification of fragility fractures of the pelvic ring: recommendations for surgical treatment. Injury 44:1733–1744. CrossRefPubMedGoogle Scholar
  6. 6.
    Scheyerer MJ, Osterhoff G, Wehrle S, Wanner GA, Simmen H-P, Werner CML (2012) Detection of posterior pelvic injuries in fractures of the pubic rami. Injury 43:1326–1329. CrossRefPubMedGoogle Scholar
  7. 7.
    Denis F, Davis S, Comfort T (1988) Sacral fractures: an important problem. Retrospective analysis of 236 cases. Clin Orthop Relat Res 227:67–81PubMedGoogle Scholar
  8. 8.
    Linstrom NJ, Heiserman JE, Kortman KE, Crawford NR, Baek S, Anderson RL, Pitt AM, Karis JP, Ross JS, Lekovic GP, Dean BL (2009) Anatomical and biomechanical analyses of the unique and consistent locations of sacral insufficiency fractures. Spine 34:309–315. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roy-Camille R, Saillant G, Gagna G, Mazel C (1985) Transverse fracture of the upper sacrum. Suicidal jumper’s fracture. Spine 10:838–845CrossRefPubMedGoogle Scholar
  10. 10.
    Rommens PM, Wagner D, Hofmann A (2017) Fragility fractures of the pelvis. JBJS Rev. PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Rommens PM (2016) Sacral bone mass distribution assessed by averaged three-dimensional CT models: implications for pathogenesis and treatment of fragility fractures of the sacrum. J Bone Jt Surg Am 98:584–590. CrossRefGoogle Scholar
  12. 12.
    Reuther G, Röhner U, Will T, Dehne I, Petereit U (2014) CT-guided screw fixation of vertical sacral fractures in local anaesthesia using a standard CT. Rofo 186:1134–1139. CrossRefPubMedGoogle Scholar
  13. 13.
    Wähnert D, Raschke MJ, Fuchs T (2013) Cement augmentation of the navigated iliosacral screw in the treatment of insufficiency fractures of the sacrum. A new method using modified implants. Int Orthop 37:1147–1150. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Beaulé PE, Antoniades J, Matta JM (2006) Trans-sacral fixation for failed posterior fixation of the pelvic ring. Arch Orthop Trauma Surg 126:49–52. CrossRefPubMedGoogle Scholar
  15. 15.
    Mehling I, Hessmann MH, Rommens PM (2012) Stabilization of fatigue fractures of the dorsal pelvis with a trans-sacral bar. Operative technique and outcome. Injury 43:446–451. CrossRefPubMedGoogle Scholar
  16. 16.
    Wagner D, Kamer L, Rommens PM, Sawaguchi T, Richards RG, Noser H (2014) 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans-sacral corridors. J Orthop Res 32:1543–1548. CrossRefPubMedGoogle Scholar
  17. 17.
    Schönenberg D, Guggenberger R, Frey D, Pape H-C, Simmen H-P, Osterhoff G (2018) CT-based evaluation of volumetric bone density in fragility fractures of the pelvis—a matched case–control analysis. Osteoporos Int 29:459–465. CrossRefPubMedGoogle Scholar
  18. 18.
    Routt ML Jr, Kregor PJ, Simonian PT, Mayo KA (1995) Early results of percutaneous iliosacral screws placed with the patient in the supine position. J Orthop Trauma 9:207–214CrossRefPubMedGoogle Scholar
  19. 19.
    Vanderschot P, Kuppers M, Sermon A, Lateur L (2009) Trans-iliac-sacral-iliac-bar procedure to treat insufficiency fractures of the sacrum. Indian J Orthop 43:245–252. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rommens PM, Wagner D, Hofmann A (2012) Surgical management of osteoporotic pelvic fractures: a new challenge. Eur J Trauma Emerg Surg 38:499–509. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Uesugi M, Ossendorf C, Rommens PM (2017) Critical dimensions of trans-sacral corridors assessed by 3D CT models. Relevance for implant positioning in fractures of the sacrum. J Orthop Res 35:2577–2584. CrossRefPubMedGoogle Scholar
  22. 22.
    Gras F, Gottschling H, Schröder M, Marintschev I, Hofmann GO, Burgkart R (2016) Transsacral osseous corridor anatomy is more amenable to screw insertion in males: a biomorphometric analysis of 280 pelves. Clin Orthop Relat Res 474:2304–2311. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Höch A, Pieroh P, Henkelmann R, Josten C, Böhme J (2017) In-screw polymethylmethacrylate-augmented sacroiliac screw for the treatment of fragility fractures of the pelvis: a prospective, observational study with 1-year follow-up. BMC Surg 17:132. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Höch A, Schimpf R, Hammer N, Schleifenbaum S, Werner M, Josten C, Böhme J (2017) Biomechanical analysis of stiffness and fracture displacement after using PMMA-augmented sacroiliac screw fixation for sacrum fractures. Biomed Tech (Berl) 62:421–428. CrossRefGoogle Scholar
  25. 25.
    Osterhoff G, Dodd AE, Unno F, Wong A, Amiri S, Lefaivre KA, Guy P (2016) Cement augmentation in sacroiliac screw fixation offers modest biomechanical advantages in a cadaver model. Clin Orthop Relat Res 474:2522–2530. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grüneweller N, Raschke MJ, Zderic I, Widmer D, Wähnert D, Gueorguiev B, Richards RG, Fuchs T, Windolf M (2016) Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a novel hemi-pelvis test model. J Orthop Res 35:1485–1493. CrossRefPubMedGoogle Scholar
  27. 27.
    Oberkircher L, Masaeli A, Bliemel C, Debus F, Ruchholtz S, Krüger A (2016) Primary stability of three different iliosacral screw fixation techniques in osteoporotic cadaver specimens-a biomechanical investigation. Spine J 16:226–232. CrossRefPubMedGoogle Scholar
  28. 28.
    Schneider W, Bortfeld T, Schlegel W (2000) Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol 45:459–478CrossRefPubMedGoogle Scholar
  29. 29.
    Henes FO, Groth M, Bley TA, Regier M, Nüchtern JV, Ittrich H, Treszl A, Adam G, Bannas P (2012) Quantitative assessment of bone marrow attenuation values at MDCT: an objective tool for the detection of bone bruise related to occult sacral insufficiency fractures. Eur Radiol 22:2229–2236. CrossRefPubMedGoogle Scholar
  30. 30.
    Gupta AC, Yoo AJ, Stone J, Barr JC, Brook A, Tutton S, Ortiz O, Hirsch AE, Larvie M, Frey ME, Jayaraman MV, Hirsch JA (2012) Percutaneous sacroplasty. J Neurointerv Surg 4:385–389. CrossRefPubMedGoogle Scholar
  31. 31.
    Lyders EM, Whitlow CT, Baker MD, Morris PP (2010) Imaging and treatment of sacral insufficiency fractures. Am J Neuroradiol 31:201–210. CrossRefPubMedGoogle Scholar
  32. 32.
    Mears SC, Sutter EG, Wall SJ, Rose DM, Belkoff SM (2010) Biomechanical comparison of three methods of sacral fracture fixation in osteoporotic bone. Spine 35:E392–E395. CrossRefPubMedGoogle Scholar
  33. 33.
    Waites MD, Mears SC, Richards AM, Mathis JM, Belkoff SM (2008) A biomechanical comparison of lateral and posterior approaches to sacroplasty. Spine 33:E735–E738. CrossRefPubMedGoogle Scholar
  34. 34.
    Andresen R, Radmer S, Wollny M, Andresen JR, Nissen U, Schober H-C (2017) CT-guided cement sacroplasty (CSP) as pain therapy in non-dislocated insufficiency fractures. Eur J Orthop Surg Traumatol 27:1045–1050. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ebraheim N, Sabry FF, Nadim Y, Xu R, Yeasting RA (2000) Internal architecture of the sacrum in the elderly. An anatomic and radiographic study. Spine 25:292–297CrossRefPubMedGoogle Scholar
  36. 36.
    Singh M, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Jt Surg Am 52:457–467CrossRefGoogle Scholar
  37. 37.
    Krappinger D, Roth T, Gschwentner M, Suckert A, Blauth M, Hengg C, Kralinger F (2012) Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data. Skeletal Radiol 41:299–304. CrossRefPubMedGoogle Scholar
  38. 38.
    Hammarstedt L, Thilander-Klang A, Muth A, Wängberg B, Odén A, Hellström M (2013) Adrenal lesions: variability in attenuation over time, between scanners, and between observers. Acta Radiol 54:817–826. CrossRefPubMedGoogle Scholar
  39. 39.
    Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM (2017) Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Jt Surg Am 99:1580–1590. CrossRefGoogle Scholar
  40. 40.
    Vivanco JF, Burgers TA, García-Rodríguez S, Crookshank M, Kunz M, MacIntyre NJ, Harrison MM, Bryant JT, Sellens RW, Ploeg H-L (2014) Estimating the density of femoral head trabecular bone from hip fracture patients using computed tomography scan data. Proc Inst Mech Eng H 228:616–626. CrossRefPubMedGoogle Scholar
  41. 41.
    Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt Surg Am 93:1057–1063. CrossRefGoogle Scholar
  42. 42.
    Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthopaedics and Traumatology, University Medical Center MainzJohannes Gutenberg-UniversityMainzGermany
  2. 2.AO Research Institute DavosDavosSwitzerland
  3. 3.Department of Orthopedics and Joint Reconstructive SurgeryToyama Municipal HospitalToyamaJapan

Personalised recommendations