Skip to main content

Advertisement

Log in

The nail–shaft-axis of the of proximal femoral nail antirotation (PFNA) is an important prognostic factor in the operative treatment of intertrochanteric fractures

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Due to the world’s aging population, intertrochanteric fractures are frequent. Considering age and comorbidities of most of these patients, it is indispensable to enable early postoperative mobilization of these patients. Intramedullary osteosynthesis with PFN-A is widely used and, in general, considered safe and reliable for the operative treatment of intertrochanteric fractures. However, implant -related complications are reported in 6–21% of all cases. In this study, we are analyzing complication rates and risk factors for implant-related complications.

Materials and methods

All intertrochanteric fractures admitted to our hospital and treated with PFN-A between January 2012 and January 2016 were analysed retrospectively. Radiological analyses of the CCD and the lateral offset on the uninjured side was compared to the CCD initially postoperatively and during follow-up on the operated side. Furthermore, we analysed the tip-apex distance (TAD), blade position in the femoral head and introduced the nail–shaft axis as a new parameter.

Results

Within 101 intertrochanteric fractures included, 16 implant-related complications were encountered (15.84%). Analyses of risk factors for secondary varus displacement of greater than 10° within the follow-up and thus risk for cut-out in the osteosynthesis revealed that etasblished risk factors such as a TAD > 25 mm, reduction in varus and an improper position of the blade were also significant risk factors in our cohort for failure of the osteosynthesis. Moreover, we introduced the nail–shaft axis a new potential risk factor and could show that a too medial or too lateral nail–shaft axis is also significantly associated with secondary varus displacement.

Conclusion

When treating introchanteric fractures with PFNA reduction in neutral or even slight valgus, aiming for a TAD < 25 mm and a correct position of the blade within the femoral head reduced the risk for secondary varus displacement significantly. Furthermore, we suggest to aim for a central nail–shaft axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dhanwal D, Dennison E, Harvey N, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45(1):15. https://doi.org/10.4103/0019-5413.73656

    Article  PubMed  PubMed Central  Google Scholar 

  2. Simmermacher RK, Bosch AM, Van der Werken C (1999) The AO/ASIF-proximal femoral nail (PFN): a new device for the treatment of unstable proximal femoral fractures. Injury 30(5):327–332. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=10505125

  3. Gadegone WM, Salphale YS (2007) Proximal femoral nail—an analysis of 100 cases of proximal femoral fractures with an average follow up of 1 year. Int Orthop 31(3):403–408. https://doi.org/10.1007/s00264-006-0170-3

    Article  CAS  PubMed  Google Scholar 

  4. Ma KL, Wang X, Luan FJ et al (2014) Proximal femoral nails antirotation, gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: a meta-analysis. Orthop Traumatol Surg Res 100(8):859–866. https://doi.org/10.1016/j.otsr.2014.07.023

    Article  PubMed  Google Scholar 

  5. Sinno K, Sakr M, Girard J, Khatib H (2010) The effectiveness of primary bipolar arthroplasty in treatment of unstable intertrochanteric fractures in elderly patients. N Am J Med Sci 2(12):561–568

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sidhu AS, Singh AP, Singh AP, Singh S (2010) Total hip replacement as primary treatment of unstable intertrochanteric fractures in elderly patients. Int Orthop 34(6):789–792. https://doi.org/10.1007/s00264-009-0826-x

    Article  PubMed  Google Scholar 

  7. Anglen JO, Weinstein JN, American Board of Orthopaedic Surgery Research Committee JN (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am 90(4):700–707. https://doi.org/10.2106/JBJS.G.00517

    Article  PubMed  Google Scholar 

  8. Fogagnolo F, Kfuri M, Paccola CAJ (2004) Intramedullary fixation of pertrochanteric hip fractures with the short AO-ASIF proximal femoral nail. Arch Orthop Trauma Surg 124(1):31–37. https://doi.org/10.1007/s00402-003-0586-9

    Article  CAS  PubMed  Google Scholar 

  9. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  10. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34(8):1273–1276. https://doi.org/10.1007/s00264-009-0866-2

    Article  PubMed  Google Scholar 

  11. Ostrum RF, Marcantonio A, Marburger R (2005) A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing. J Orthop Trauma 19(10):681–686. https://doi.org/10.1097/01.bot.0000184145.75201.1b

    Article  PubMed  Google Scholar 

  12. Streubel PN, Wong AHW, Ricci WM, Gardner MJ (2011) Is there a standard trochanteric entry site for nailing of subtrochanteric femur fractures? J Orthop Trauma 25:202–207. https://doi.org/10.1097/BOT.0b013e3181e93ce2

    Article  PubMed  Google Scholar 

  13. Pan S, Liu X-H, Feng T, Kang H-J, Tian Z-G, Lou C-G (2017) Influence of different great trochanteric entry points on the outcome of intertrochanteric fractures: a retrospective cohort study. BMC Musculoskelet Disord 18(1):107. https://doi.org/10.1186/s12891-017-1472-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4(10):1623–1627. https://doi.org/10.1371/journal.pmed.0040296

    Google Scholar 

  15. Marsh JL, Slongo TF, Agel J et al (2007) Fracture and dislocation classification compendium—2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 21(10 Suppl):S1–S133. https://doi.org/10.1097/00005131-200711101-00001

    Article  CAS  PubMed  Google Scholar 

  16. Lindskog DM, Baumgaertner MR (2004) Unstable intertrochanteric hip fractures in the elderly. J Am Acad Orthop Surg 12(3):179–190

    Article  PubMed  Google Scholar 

  17. Initial Assessment and Management Advanced Trauma Life Support- Student Course Manual (2012) American College of Surgeons, Chicago

  18. Morshed S (2014) Current options for determining fracture union. Adv Med 2014:708574. https://doi.org/10.1155/2014/708574

  19. Cleveland M, Bosworth DM, Thompson FR, Wilson HJ, Ishizuka T (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Jt Surg 41(8):1399–1408. http://jbjs.org/content/41/8/1399.abstract

  20. Parker J (1992) Cutting-out of the dynamic hip screw related to its position. J Bone Jt Surg Br 74(4):1992

    Google Scholar 

  21. Andruszkow H, Frink M, Frömke C et al (2012) Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop 36(11):2347–2354. https://doi.org/10.1007/s00264-012-1636-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Adams CI, Robinson CM, Court-Brown CM, McQueen MM (2001) Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur. J Orthop Trauma 15(6):394–400. https://doi.org/10.1097/00005131-200108000-00003

    Article  CAS  PubMed  Google Scholar 

  23. Turgut A, Kalenderer O, Karapınar L, Kumbaracı M, Akkan HA, Ağuş H (2016) Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg 136(5):623–630. https://doi.org/10.1007/s00402-016-2410-3

    Article  PubMed  Google Scholar 

  24. Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PRT (2014) Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Jt J 96 B(8):1029–1034. https://doi.org/10.1302/0301-620X.96B8.33644

    Article  Google Scholar 

  25. De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G (2012) Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg Am 94:1266–1272. https://doi.org/10.2106/JBJS.K.00357

    Article  PubMed  Google Scholar 

  26. Marmor M, Liddle K, Buckley J, Matityahu A (2016) Effect of varus and valgus alignment on implant loading after proximal femur fracture fixation. Eur J Orthop Surg Traumatol 26(4):379–383. https://doi.org/10.1007/s00590-016-1746-2

    Article  Google Scholar 

  27. Angelini AJ, Livani B, Flierl MA, Morgan SJ, Belangero WD (2010) Less invasive percutaneous wave plating of simple femur shaft fractures: a prospective series. Injury 41(6):624–628. https://doi.org/10.1016/j.injury.2010.01.101

    Article  PubMed  Google Scholar 

  28. Helwig P, Faust G, Hindenlang U et al (2009) Finite element analysis of four different implants inserted in different positions to stabilize an idealized trochanteric femoral fracture. Injury 40(3):288–295. https://doi.org/10.1016/j.injury.2008.08.016

    Article  PubMed  Google Scholar 

  29. Marmor M, Nystuen C, Ehemer N, McClellan RT, Matityahu A (2012) Accuracy of in situ neck-shaft angle and shortening measurements of the anatomically reduced, varus malreduced and shortened proximal femur: can we believe what we see on the postoperative films? Injury 43(6):846–849. https://doi.org/10.1016/j.injury.2011.10.010

    Article  PubMed  Google Scholar 

  30. Farhang K, Desai R, Wilber JH, Cooperman DR, Liu RW (2014) An anatomical study of the entry point in the greater trochanter for intramedullary nailing. Bone Jt J 96B(9):1274–1281. https://doi.org/10.1302/0301-620X.96B9.34314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn-Christian Link.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical approval

This is a retrospective analysis of our data. No ethical approval was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiamton, C., Boernert, K., Babst, R. et al. The nail–shaft-axis of the of proximal femoral nail antirotation (PFNA) is an important prognostic factor in the operative treatment of intertrochanteric fractures. Arch Orthop Trauma Surg 138, 339–349 (2018). https://doi.org/10.1007/s00402-017-2857-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2857-x

Keywords

Navigation