Advertisement

Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 10, pp 1417–1422 | Cite as

Leukocyte-reduced platelet-rich plasma increases proliferation of tenocytes treated with prednisolone: a cell cycle analysis

  • Franz Hilber
  • Markus Loibl
  • Siegmund Lang
  • Maximilian Kerschbaum
  • Gero Brockhoff
  • Peter Angele
  • Johannes Zellner
  • Paul Schmitz
  • Michael Nerlich
  • Michael WorlicekEmail author
Arthroscopy and Sports Medicine

Abstract

Introduction

The purpose of this study was to evaluate the effect of allogenic leukocyte-reduced platelet-rich plasma on human tenocytes after treatment with prednisolone and to develop a standardization of its application for clinical practice.

Methods

A leukocyte-reduced PRP was produced using the Arthrex Double Syringe (Arthrex, Inc., Naples, FL, USA), in a modified single-spin separation method. Human tenocytes were isolated from discarded rotator cuff segments. Tenocytes were cultured in the presence of PRP and prednisolone, both alone and in combination. Control samples were treated in media containing 2% FCS for 72 h. After 72 h of incubation, cell cycle kinetics of tenocytes were analyzed to assess proliferation.

Results

Incubation of the tenocytes with PRP alone for 48 h led to high proliferation rate (10% PRP, 28.0 ± 10.5%; 20% PRP, 40.9 ± 3.3%). Incubation in the presence of prednisolone led to a significant decrease of the proliferation rate (5.2 ± 3.1%; p < 0.05). Treatment with PRP for 48 h significantly increased the proliferation of tenocytes in a dose-dependent manner (10% PRP, 28.0 ± 10.5%; 20% PRP, 40.9 ± 3.3%; p < 0.05). The presence of prednisolone resulted in a decreased tenocyte proliferation (5.2 ± 3.1%; p < 0.05), whereas addition of PRP for 24 and 48 h after prednisolone exposure did not show any compensating effect independent of PRPs concentration (10% PRP, 3.7 ± 3.0%; 20% PRP, 2.5 ± 2.5%). However, a significantly increased cell proliferation of tenocytes was evident when PRP was applied 24 h after prednisolone incubation for 48 h (31.0 ± 3.4 and 34.3 ± 4.7%).

Conclusion

The use of leukocyte-reduced PRP stimulates the proliferation of tenocytes and antagonizes the negative effect of prednisolone 24 h after treatment. Addition of PRP 48 h after treatment with prednisolone has no positive effect on the proliferation rate of tenocytes.

Keywords

Tenocytes Platelet-rich plasma Corticosteroids 

Notes

Acknowledgements

The authors thank Elke Gerstl and Rudolf Jung for their excellent technical assistance. We would like to acknowledge Arthrex Inc. (Naples, FL, USA) for contributing to the sampling material. We also thank Monika Schöll for proofreading the manuscript.

Author contributions

FH and MW drafted the manuscript and evaluated data. ML evaluated the data and helped to draft the manuscript. SL performed the statistical analysis. GB, PA, and JZ participated in the coordination of the study and evaluated data; PS and MN were the performing surgeons and helped with data collection and interpretation of data for the work. ML conceived of the study and developed its design. MK contributed in revising the manuscript and implemented the reviewers’ suggestions. MW and FH were responsible for coordination, data collection/interpretation, and proofreading of the final manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have any conflict of interest.

References

  1. 1.
    Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62(4):489–496CrossRefPubMedGoogle Scholar
  2. 2.
    Alsousou J, Thompson M, Hulley P, Noble A, Willett K (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br 91(8):987–996. doi: 10.1302/0301-620X.91B8.22546 CrossRefPubMedGoogle Scholar
  3. 3.
    Boswell SG, Schnabel LV, Mohammed HO, Sundman EA, Minas T, Fortier LA (2014) Increasing platelet concentrations in leukocyte-reduced platelet-rich plasma decrease collagen gene synthesis in tendons. Am J Sports Med 42(1):42–49. doi: 10.1177/0363546513507566 CrossRefPubMedGoogle Scholar
  4. 4.
    Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnoli LG, Orlandi A (2009) Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods 15(4):625–634. doi: 10.1089/ten.TEC.2008.0518 CrossRefPubMedGoogle Scholar
  5. 5.
    Mazzocca AD, McCarthy MB, Chowaniec DM, Dugdale EM, Hansen D, Cote MP, Bradley JP, Romeo AA, Arciero RA, Beitzel K (2012) The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med 40(8):1742–1749. doi: 10.1177/0363546512452713 CrossRefPubMedGoogle Scholar
  6. 6.
    Pauly S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, Wildemann B (2010) Characterization of tendon cell cultures of the human rotator cuff. Eur Cells Mater 20:84–97CrossRefGoogle Scholar
  7. 7.
    Pallua N, Wolter T, Markowicz M (2010) Platelet-rich plasma in burns. Burns 36(1):4–8. doi: 10.1016/j.burns.2009.05.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Martinez-Zapata MJ, Marti-Carvajal AJ, Sola I, Exposito JA, Bolibar I, Rodriguez L, Garcia J (2012) Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev 10:CD006899. doi: 10.1002/14651858.CD006899.pub2 PubMedGoogle Scholar
  9. 9.
    Marmotti A, de Girolamo L, Bonasia DE, Bruzzone M, Mattia S, Rossi R, Montaruli A, Dettoni F, Castoldi F, Peretti G (2014) Bone marrow derived stem cells in joint and bone diseases: a concise review. Int Orthop 38(9):1787–1801. doi: 10.1007/s00264-014-2445-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Abdul-Wahab TA, Betancourt JP, Hassan F, Thani SA, Choueiri H, Jain NB, Malanga GA, Murrell WD, Prasad A, Verborgt O (2016) Initial treatment of complete rotator cuff tear and transition to surgical treatment: systematic review of the evidence. Muscles Ligaments Tendons J 6(1):35–47. doi: 10.11138/mltj/2016.6.1.035 PubMedPubMedCentralGoogle Scholar
  11. 11.
    MacMahon PJ, Eustace SJ, Kavanagh EC (2009) Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology 252(3):647–661. doi: 10.1148/radiol.2523081929 CrossRefPubMedGoogle Scholar
  12. 12.
    Behrens F, Shepard N, Mitchell N (1975) Alterations of rabbit articular cartilage by intra-articular injections of glucocorticoids. J Bone Joint Surg Am 57(1):70–76CrossRefPubMedGoogle Scholar
  13. 13.
    Farkas B, Kvell K, Czompoly T, Illes T, Bardos T (2010) Increased chondrocyte death after steroid and local anesthetic combination. Clin Orthop Relat Res 468(11):3112–3120. doi: 10.1007/s11999-010-1443-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nichols AW (2005) Complications associated with the use of corticosteroids in the treatment of athletic injuries. Clin J Sport Med 15(5):370–375CrossRefPubMedGoogle Scholar
  15. 15.
    Papacrhistou G, Anagnostou S, Katsorhis T (1997) The effect of intraarticular hydrocortisone injection on the articular cartilage of rabbits. Acta Orthop Scand Suppl 275:132–134CrossRefPubMedGoogle Scholar
  16. 16.
    Wong MW, Tang YN, Fu SC, Lee KM, Chan KM (2004) Triamcinolone suppresses human tenocyte cellular activity and collagen synthesis. Clin Orthop Relat Res 421:277–281CrossRefGoogle Scholar
  17. 17.
    Beitzel K, McCarthy MB, Cote MP, Apostolakos J, Russell RP, Bradley J, ElAttrache NS, Romeo AA, Arciero RA, Mazzocca AD (2013) The effect of ketorolac tromethamine, methylprednisolone, and platelet-rich plasma on human chondrocyte and tenocyte viability. Arthroscopy 29(7):1164–1174. doi: 10.1016/j.arthro.2013.04.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Loibl M, Lang S, Brockhoff G, Gueorguiev B, Hilber F, Worlicek M, Baumann F, Grechenig S, Zellner J, Huber M, Valderrabano V, Angele P, Nerlich M, Prantl L, Gehmert S (2016) The effect of leukocyte-reduced platelet-rich plasma on the proliferation of autologous adipose-tissue derived mesenchymal stem cells. Clin Hemorheol Microcirc 61(4):599–614. doi: 10.3233/CH-141920 CrossRefPubMedGoogle Scholar
  19. 19.
    Mazzocca AD, McCarthy MB, Intravia J, Beitzel K, Apostolakos J, Cote MP, Bradley J, Arciero RA (2013) An in vitro evaluation of the anti-inflammatory effects of platelet-rich plasma, ketorolac, and methylprednisolone. Arthroscopy 29(4):675–683. doi: 10.1016/j.arthro.2012.12.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Carofino B, Chowaniec DM, McCarthy MB, Bradley JP, Delaronde S, Beitzel K, Cote MP, Arciero RA, Mazzocca AD (2012) Corticosteroids and local anesthetics decrease positive effects of platelet-rich plasma: an in vitro study on human tendon cells. Arthroscopy 28(5):711–719. doi: 10.1016/j.arthro.2011.09.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Jo CH, Kim JE, Yoon KS, Shin S (2012) Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med 40(5):1035–1045. doi: 10.1177/0363546512437525 CrossRefPubMedGoogle Scholar
  22. 22.
    Anitua E, Andia I, Sanchez M, Azofra J, del Mar Zalduendo M, de la Fuente M, Nurden P, Nurden AT (2005) Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res 23(2):281–286. doi: 10.1016/j.orthres.2004.08.015 CrossRefPubMedGoogle Scholar
  23. 23.
    de Mos M, van der Windt AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, van Osch GJ (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36(6):1171–1178. doi: 10.1177/0363546508314430 CrossRefPubMedGoogle Scholar
  24. 24.
    Lopez-Vidriero E, Goulding KA, Simon DA, Sanchez M, Johnson DH (2010) The use of platelet-rich plasma in arthroscopy and sports medicine: optimizing the healing environment. Arthroscopy 26(2):269–278. doi: 10.1016/j.arthro.2009.11.015 CrossRefPubMedGoogle Scholar
  25. 25.
    Aoto K, Kanamori A, Yoshioka T, Uemura K, Sakane M, Yamazaki M (2014) Circadian variation of growth factor levels in platelet-rich plasma. Clin J Sport Med 24(6):509–512. doi: 10.1097/JSM.0000000000000080 CrossRefPubMedGoogle Scholar
  26. 26.
    Werther K, Christensen IJ, Nielsen HJ (2002) Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets. Scand J Clin Lab Investig 62(5):343–350. doi: 10.1080/00365510260296492 CrossRefGoogle Scholar
  27. 27.
    Cross JA, Cole BJ, Spatny KP, Sundman E, Romeo AA, Nicholson GP, Wagner B, Fortier LA (2015) Leukocyte-reduced platelet-rich plasma normalizes matrix metabolism in torn human rotator cuff tendons. Am J Sports Med 43(12):2898–2906. doi: 10.1177/0363546515608157 CrossRefPubMedGoogle Scholar
  28. 28.
    Harvey WF, Hunter DJ (2009) The role of analgesics and intra-articular injections in disease management. Med Clin N Am 93(1):201–211. doi: 10.1016/j.mcna.2008.07.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, Arciero RA, Beitzel K (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 94(4):308–316. doi: 10.2106/JBJS.K.00430 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Franz Hilber
    • 1
  • Markus Loibl
    • 1
  • Siegmund Lang
    • 1
  • Maximilian Kerschbaum
    • 1
  • Gero Brockhoff
    • 2
  • Peter Angele
    • 1
  • Johannes Zellner
    • 1
  • Paul Schmitz
    • 1
  • Michael Nerlich
    • 1
  • Michael Worlicek
    • 1
    Email author
  1. 1.Department of Trauma SurgeryUniversity of RegensburgRegensburgGermany
  2. 2.Department of Obstetrics and GynecologyUniversity Medical Center RegensburgRegensburgGermany

Personalised recommendations