Skip to main content

Advertisement

Log in

Biomechanics of the osteoporotic spine, pain, and principles of training

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

A fracture is a clinical manifestation of osteoporosis and is one of the main causes of functional limitations and chronic pain in patients with osteoporosis. Muscle and coordination training are recommended to the patients as general measures. We inquired whether sling training is better than traditional physiotherapy in relieving pain and improving abilities of daily living.

Methods

Fifty patients with osteoporosis were divided into two groups. Group A performed conventional physiotherapy, while Group B performed sling training exercises. Data were collected before and after the intervention and after 3 months. The registered parameters were stamina, posture, and pain. Posture, torques, and the associated strength of spinal muscles were studied in a biomechanical model in order to estimate the forces acting on the spine. Furthermore, the factors that exerted a positive impact on the success of therapy were registered.

Results

Forty-four patients (88%) completed the study. Positive effects of the training were noted in both groups, but significantly better effects were observed in the group that performed sling training. A reduction of pain independent of the number of fractures, significantly reduced torques, and reduced muscle strength were registered.

Conclusions

Specific training programs helped to increase muscle strength and straightening the back thereby reducing the force needed on a permanent basis and decreasing torque in the spine. Sling training was more effective in that than traditional physiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldstein CL, Brodke DS, Choma TJ (2015) Surgical management of spinal conditions in the elderly osteoporotic spine. Neurosurgery 77(Suppl 4):S98–S107. doi:10.1227/NEU.0000000000000948

    Article  Google Scholar 

  2. Heaney RP (1992) The natural history of vertebral osteoporosis. Is low bone mass an epiphenomenon? Bone 13(Suppl 2):S23–S26

    Article  PubMed  Google Scholar 

  3. Broy SB (2016) The vertebral fracture cascade: etiology and clinical implications. J Clin Densitom 19(1):29–34. doi:10.1016/j.jocd.2015.08.007

    Article  PubMed  Google Scholar 

  4. Sinaki M (1998) Musculoskeletal challenges of osteoporosis. Aging (Milano) 10(3):249–262

    CAS  Google Scholar 

  5. Mika A, Unnithan VB, Mika P (2005) Differences in thoracic kyphosis and in back muscle strength in women with bone loss due to osteoporosis. Spine (Phila Pa 1976) 30(2): 241–246

    Article  PubMed  Google Scholar 

  6. De Smet AA, Robinson RG, Johnson BE et al (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166(2):497–500. doi:10.1148/radiology.166.2.3336728

    Article  PubMed  Google Scholar 

  7. Rosenberger WF, Lachin JM (2002) Randomization in clinical trials: theory and practice. Wiley series in probability and statistics. Wiley, New York

    Book  Google Scholar 

  8. Begerow B, Pfeifer M, Minne HW (2004) Sport und Bewegungstherapie in der Rehabilitation der Osteoporose: Teil II: Bewegung und Therapie. Deutsche Zeitschrift für Sportmedizin 55(11):301–302

    Google Scholar 

  9. Schröder G, Knauerhase A, Kundt G et al (2014) Trunk stabilization with sling training in osteoporosis patients—a randomized clinical trial. Eur Rev Aging Phys Act 11(1):61–68. doi:10.1007/s11556-013-0128-6

    Article  Google Scholar 

  10. Basler H-D (2011) Akutschmerztherapie in Padiatrie und Geriatrie—Schmerzmessung: Welche Schmerzskala bei welchen Patienten? (Acute pain management in paediatrics and geriatrics—pain assessment: which scale for which patient?). Anasthesiol Intensivmed Notfallmed Schmerzther 46(5): 334–341; quiz 342. doi:10.1055/s-0031-1277977

    Article  PubMed  Google Scholar 

  11. Drerup B (2014) Rasterstereographic measurement of scoliotic deformity. Scoliosis 9(1):22. doi:10.1186/s13013-014-0022-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liljenqvist U, Halm H, Hierholzer E et al (1998) Die dreidimensionale Oberflachenvermessung von Wirbelsaulendeformitaten anhand der Videorasterstereographie (3-dimensional surface measurement of spinal deformities with video rasterstereography). Z Orthop Ihre Grenzgeb 136(1):57–64. doi:10.1055/s-2008-1044652

    Article  CAS  PubMed  Google Scholar 

  13. Bergmark A (1989) Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    Article  CAS  PubMed  Google Scholar 

  14. Berry JL, Moran JM, Berg WS et al (1987) A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976) 12(4): 362–367

    Article  CAS  Google Scholar 

  15. Duval-Beaupere G, Robain G (1987) Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured in vivo. Int Orthop 11(3):261–269

    Article  CAS  PubMed  Google Scholar 

  16. ASMUSSEN E, KLAUSEN K (1962) Form and function of the erect human spine. Clin Orthop 25:55–63

    CAS  PubMed  Google Scholar 

  17. Jäger M, Luttmann A, Göllner R et al (2001) The Dortmunder—Biomechanical Model for Quantification and Assessment of the Load on the Lumbar Spine. In: SAE International400 Commonwealth Drive, Warrendale, PA, United States

  18. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5(4):383–389 (discussion 397)

    Article  CAS  PubMed  Google Scholar 

  19. Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5(4):390–396 (discussion 397)

    Article  CAS  PubMed  Google Scholar 

  20. Roberts N, Hogg D, Whitehouse GH et al (1998) Quantitative analysis of diurnal variation in volume and water content of lumbar intervertebral discs. Clin Anat 11(1):1–8. doi:10.1002/(SICI)1098-2353(1998)11:1<1:AID-CA1>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  21. Schröder G, Knauerhase A, Kundt G et al (2014) Neue Aspekte der physikalischen Therapie der Osteoporose. Osteologie 23(2):123–132

    Google Scholar 

  22. Colloca CJ, Keller TS (2001) Stiffness and neuromuscular reflex response of the human spine to posteroanterior manipulative thrusts in patients with low back pain. J Manip Physiol Ther 24(8):489–500. doi:10.1067/mmt.2001.118209

    Article  CAS  Google Scholar 

  23. Kim J-J (2016) An analysis on muscle tone and stiffness during sling exercise on static prone position. J Phys Ther Sci 28(12):3440–3443. doi:10.1589/jpts.28.3440

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roh HS, Cho WJ, Ryu WJ et al (2016) The change of pain and lumbosacral sagittal alignment after sling exercise therapy for patients with chronic low back pain. J Phys Ther Sci 28(10):2789–2792. doi:10.1589/jpts.28.2789

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee S-B, Cho W-J (2016) The effect of sling exercise on sagittal lumbosacral angle and intervertebral disc area of chronic low back pain patients. J Exerc Rehabil 12(5):471–475. doi:10.12965/jer.1632676.338

    Article  PubMed  PubMed Central  Google Scholar 

  26. Karunanayake AL, Pathmeswaran A, Wijayaratne LS (2017) Chronic low back pain and its association with lumbar vertebrae and intervertebral disc changes in adults. A case control study. Int J Rheum Dis. doi:10.1111/1756-185X.13026

    PubMed  Google Scholar 

  27. Kapandji IA, Koebke J (2009) Funktionelle Anatomie der Gelenke: Schematisierte und kommentierte Zeichnungen zur menschlichen Biomechanik; [einbändige Ausgabe: obere Extremität, untere Extremität, Rumpf und Wirbelsäule], 5., [unveränd.] Aufl. Thieme, Stuttgart

    Google Scholar 

  28. O’Sullivan P, Twomey L, Allison G et al (1997) Altered patterns of abdominal muscle activation in patients with chronic low back pain. Aust J Physiother 43(2):91–98

    Article  PubMed  Google Scholar 

  29. Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976) 21(22):2640–2650

    Article  CAS  Google Scholar 

  30. Richardson C, Hodges P, Hides J (2009) Segmentale Stabilisation im LWS- und Beckenbereich: [therapeutische Übungen zur Behandlung von Low back pain]. Elsevier Urban & Fischer, München

    Google Scholar 

  31. Ross PD, Ettinger B, Davis JW et al (1991) Evaluation of adverse health outcomes associated with vertebral fractures. Osteoporos Int 1(3):134–140

    Article  CAS  PubMed  Google Scholar 

  32. Sinaki M, Wollan PC, Scott RW et al (1996) Can strong back extensors prevent vertebral fractures in women with osteoporosis? Mayo Clin Proc 71(10):951–956. doi:10.1016/S0025-6196(11)63768-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Schröder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures were performed in accordance with the ethical standards of the authorized ethics committee for human experimentation (institutional and national) and the Helsinki Declaration of 1975, as revised in 2000.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, G., Knauerhase, A., Willenberg, H.S. et al. Biomechanics of the osteoporotic spine, pain, and principles of training. Arch Orthop Trauma Surg 137, 617–624 (2017). https://doi.org/10.1007/s00402-017-2669-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2669-z

Keywords

Navigation