Archives of Orthopaedic and Trauma Surgery

, Volume 137, Issue 5, pp 701–711 | Cite as

Kinematic analysis of stair climbing in rotating platform cruciate-retaining and posterior-stabilized mobile-bearing total knee arthroplasties

  • Koji Murakami
  • Satoshi Hamai
  • Ken Okazaki
  • Satoru Ikebe
  • Hiroyuki Nakahara
  • Hidehiko Higaki
  • Takeshi Shimoto
  • Hideki Mizu-uchi
  • Umito Kuwashima
  • Yukihide Iwamoto
Knee Arthroplasty



The aim of our study was to compare and contrast the effects of two types of mobile-bearing total knee arthroplasties (TKA), namely, the cruciate-retaining (CR) and posterior-stabilized (PS) TKAs, on clinical outcomes and in vivo kinematics during stair climbing.

Materials and methods

The Press-Fit Condylar Sigma rotating platform was used for both CR and PS TKAs. Patient-reported outcomes were assessed using the 2011 Knee Society Score. Quadriceps muscle strength was evaluated by isokinetic dynamometry. In vivo kinematics were evaluated using periodic sagittal plane radiographic images obtained during stair climbing to quantify anteroposterior (AP) tibiofemoral translation, implant flexion and axial rotation angles using image-matching techniques. Outcomes were evaluated in 20 TKAs, which had been undergone with clinical success, including ten knees with CR types and ten knees with PS types.


There were no significant differences between the CR and PS TKA groups (p > 0.05) in isometric extensor torque (1.0 ± 0.2 and 1.1 ± 0.6 N m/kg, respectively) or patient-reported score for stair climbing function (4.0 ± 0.5 and 3.8 ± 0.9, respectively). Both types of TKAs showed stable AP translation in the mid range of knee flexion and paradoxical translation in the low range of flexion, with limited rotation, during stair climbing. There were no significant differences between the CR and PS TKA groups (P > 0.05) in anterior translation from 80° to 40° of knee flexion (4.2 ± 1.2 and 3.5 ± 1.6 mm, respectively), posterior translation from 40° to 10° of knee flexion (2.3 ± 1.9 and 2.0 ± 1.5 mm, respectively), and total external rotation (2.8° ± 4.9° and 0.5° ± 5.0°, respectively).


Both CR and PS types of rotating platform mobile-bearing TKAs provided reproducible knee joint kinematics during stair climbing and equivalent clinical outcomes.

Level of evidence



Total knee arthroplasty Stair climbing Mobile-bearing total knee arthroplasty Image-matching techniques Knee joint kinematics 



The authors declare that they have no conflict of interest. No funding was received for this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Vessely MB, Whaley AL, Harmsen WS, Schleck CD, Berry DJ (2006) The Chitranjan Ranawat Award: long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res 452:28–34. doi: 10.1097/01.blo.0000229356.81749.11 CrossRefPubMedGoogle Scholar
  2. 2.
    Kim Y-H, Park J-W, Kim J-S, Kulkarni SS (2014) Long-term clinical outcomes and survivorship of press-fit condylar sigma fixed-bearing and mobile-bearing total knee prostheses in the same patients. J Bone Joint Surg Am 96(19):e168. doi: 10.2106/JBJS.M.01130 CrossRefPubMedGoogle Scholar
  3. 3.
    Nilsdotter AK, Toksvig-Larsen S, Roos EM (2009) Knee arthroplasty: are patients’ expectations fulfilled? A prospective study of pain and function in 102 patients with 5-year follow-up. Acta Orthop 80(1):55–61. doi: 10.1080/17453670902805007 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ (2009) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63. doi: 10.1007/s11999-009-1119-9 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lombardi AV, Berend KR, Adams JB (2014) Why knee replacements fail in 2013: patient, surgeon, or implant? Bone Joint J 96-B:101–104. doi: 10.1302/0301-620X.96B11.34350 CrossRefPubMedGoogle Scholar
  6. 6.
    Zeni JA, Snyder-Mackler L (2010) Preoperative predictors of persistent impairments during stair ascent and descent after total knee arthroplasty. J Bone Joint Surg Am 92(5):1130–1136. doi: 10.2106/JBJS.I.00299 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Banks SA, Hodge WA (2004) Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res 426:187–193. doi: 10.1097/ CrossRefGoogle Scholar
  8. 8.
    Catani F, Belvedere C, Ensini A, Feliciangeli A, Giannini S, Leardini A (2011) In-Vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J Orthop Res 29(10):1484–1490. doi: 10.1002/jor.21397 CrossRefPubMedGoogle Scholar
  9. 9.
    Mündermann A, Dyrby CO, D’Lima DD, Colwell CW, Andriacchi TP (2008) In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res 26(9):1167–1172. doi: 10.1002/jor.20655 CrossRefPubMedGoogle Scholar
  10. 10.
    Shimizu N, Tomita T, Yamazaki T, Yoshikawa H, Sugamoto K (2013) Posterior sliding of the femur during stair ascending and descending in a high-flex posterior stabilized total knee arthroplasty. J Arthroplasty 28(10):1707–1711. doi: 10.1016/j.arth.2013.03.026 CrossRefPubMedGoogle Scholar
  11. 11.
    Dennis DA, Komistek RD (2006) Mobile-bearing total knee arthroplasty. Clin Orthop Relat Res 452:70–77. doi: 10.1097/01.blo.0000238776.27316.d6 CrossRefPubMedGoogle Scholar
  12. 12.
    Okamoto N, Nakamura E, Nishioka H, Karasugi T, Okada T, Mizuta H (2014) In vivo kinematic comparison between mobile-bearing and fixed-bearing total knee arthroplasty during step-up activity. J Arthroplasty 29(12):2393–2396. doi: 10.1016/j.arth.2014.02.022 CrossRefPubMedGoogle Scholar
  13. 13.
    Ranawat CS, Komistek RD, Rodriguez JA, Dennis DA, Anderle M (2004) In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop Relat Res 184–190Google Scholar
  14. 14.
    Sawaguchi N, Majima T, Ishigaki T, Mori N, Terashima T, Minami A (2010) Mobile-bearing total knee arthroplasty improves patellar tracking and patellofemoral contact stress: in vivo measurements in the same patients. J Arthroplasty 25(6):920–925. doi: 10.1016/j.arth.2009.07.024 CrossRefPubMedGoogle Scholar
  15. 15.
    Digennaro V, Zambianchi F, Marcovigi A, Mugnai R, Fiacchi F, Catani F (2014) Design and kinematics in total knee arthroplasty. Int Orthop 38(2):227–233. doi: 10.1007/s00264-013-2245-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harman MK, Bonin SJ, Leslie CJ, Banks SA, Hodge WA (2014) Total knee arthroplasty designed to accommodate the presence or absence of the posterior cruciate ligament. Adv Orthop 2014:1–8. doi: 10.1155/2014/178156 Google Scholar
  17. 17.
    Wolterbeek N, Nelissen RGHH, Valstar ER (2011) No differences in in vivo kinematics between six different types of knee prostheses. Knee Surg Sports Traumatol Arthrosc 20(3):559–564. doi: 10.1007/s00167-011-1605-y CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Clary CW, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ (2013) The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J Biomech 46(7):1351–1357. doi: 10.1016/j.jbiomech.2013.01.025 CrossRefPubMedGoogle Scholar
  19. 19.
    Minoda Y, Kobayashi A, Iwaki H, Miyaguchi M, Kadoya Y, Ohashi H, Takaoka K (2004) Characteristics of polyethylene wear particles isolated from synovial fluid after mobile-bearing and posterior-stabilized total knee arthroplasties. J Biomed Mater Res 71(1):1–6. doi: 10.1002/jbm.b.30005 CrossRefGoogle Scholar
  20. 20.
    Kuwashima U, Hamai S, Okazaki K, Ikebe S, Higaki H et al (2016) Contact stress analysis of the anterior tibial post in bi-cruciate stabilized and mobile-bearing posterior stabilized total knee arthroplasty designs. J Mech Biomed Mater 60:460–467. doi: 10.1016/j.jmbbm.2016.03.003 CrossRefGoogle Scholar
  21. 21.
    Okazaki K, Tashiro Y, Mizu-uchi H et al (2014) Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty. Knee 21(4):806–809. doi: 10.1016/j.knee.2014.02.019 CrossRefPubMedGoogle Scholar
  22. 22.
    Okazaki K, Miura H, Matsuda S, Takeuchi N, Mawatari T, Hashizume M, Iwamoto Y (2006) Asymmetry of mediolateral laxity of the normal knee. J Orthop Sci 11(3):264–266. doi: 10.1007/s00776-006-1009-x CrossRefPubMedGoogle Scholar
  23. 23.
    Hamai S, Miura H, Okazaki K, Shimoto T, Higaki H, Iwamoto Y (2014) No influence of coronal laxity and alignment on lift-off after well-balanced and aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(8):1799–1804. doi: 10.1007/s00167-013-2500-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Nakahara H, Okazaki K, Hamai S, Okamoto S, Kuwashima U, Higaki H, Iwamoto Y (2015) Does knee stability in the coronal plane in extension affect function and outcome after total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 23(6):1693–1698. doi: 10.1007/s00167-014-3122-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Lindstrand A, Boegård T, Egund N, Thorngren KG (1982) Use of a guide instrument for compartmental knee arthroplasty. Acta Orthop Scand 53(4):633–639CrossRefPubMedGoogle Scholar
  26. 26.
    Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res 248:9–12Google Scholar
  27. 27.
    Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 Press Fit Condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplasty 16(5):635–640. doi: 10.1054/arth.2001.23569 CrossRefPubMedGoogle Scholar
  28. 28.
    Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 84(1):50–53CrossRefPubMedGoogle Scholar
  29. 29.
    Tashiro Y, Miura H, Matsuda S, Okazaki K, Iwamoto Y (2007) Minimally invasive versus standard approach in total knee arthroplasty. Clin Orthop Relat Res 463:144–150. doi: 10.1097/BLO.0b013e31814a5100 PubMedGoogle Scholar
  30. 30.
    Kamimura A, Sakakima H, Tsutsumi F, Sunahara N (2014) Preoperative predictors of ambulation ability at different time points after total hip arthroplasty in patients with osteoarthritis. Rehabil Res Pract 2014:1–7. doi: 10.1155/2014/861268 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2012) The new knee society knee scoring system. Clin Orthop Relat Res 470(1):3–19. doi: 10.1007/s11999-011-2135-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Matsuda S, Kawahara S, Okazaki K, Tashiro Y, Iwamoto Y (2013) Postoperative alignment and ROM affect patient satisfaction after TKA. Clin Orthop Relat Res 471(1):127–133. doi: 10.1007/s11999-012-2533-y CrossRefPubMedGoogle Scholar
  33. 33.
    Taniguchi N, Matsuda S, Kawaguchi T, Tabara Y, Ikezoe T, Tsuboyama T, Ichihashi N et al (2015) The KSS 2011 reflects symptoms, physical activities, and radiographic grades in a Japanese population. Clin Orthop Relat Res 473(1):70–75. doi: 10.1007/s11999-014-3650-6 CrossRefPubMedGoogle Scholar
  34. 34.
    Hamai S, Okazaki K, Shimoto T, Nakahara H, Higaki H, Iwamoto Y (2015) Continuous sagittal radiological evaluation of stair-climbing in cruciate-retaining and posterior-stabilized total knee arthroplasties using image-matching techniques. J Arthroplasty 30(5):864–869. doi: 10.1016/j.arth.2014.12.027 CrossRefPubMedGoogle Scholar
  35. 35.
    Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Okazaki K, Iwamoto Y (2008) Three-dimensional knee joint kinematics during golf swing and stationary cycling after total knee arthroplasty. J Orthop Res 26(12):1556–1561. doi: 10.1002/jor.20671 CrossRefPubMedGoogle Scholar
  36. 36.
    Nakahara H, Okazaki K, Hamai S, Kawahara S, Higaki H, Mizu-uchi H, Iwamoto Y (2015) Rotational alignment of the tibial component affects the kinematic rotation of a weight-bearing knee after total knee arthroplasty. Knee 22(3):201–205. doi: 10.1016/j.knee.2015.01.002 CrossRefPubMedGoogle Scholar
  37. 37.
    Ellerkmann RM, Cundiff GW, Melick CF, Nihira MA, Leffler K, Bent AE (2001) Correlation of symptoms with location and severity of pelvic organ prolapse. Am J Obstet Gynecol 185(6):1332–1338. doi: 10.1067/mob.2001.119078
  38. 38.
    Skoffer B, Dalgas U, Mechlenburg I, Søballe K, Maribo T (2015) Functional performance is associated with both knee extensor and flexor muscle strength in patients scheduled for total knee arthroplasty: a cross-sectional study. J Rehabil Med 47(5):454–459. doi: 10.2340/16501977-1940 CrossRefPubMedGoogle Scholar
  39. 39.
    Heyse TJ, Becher C, Kron N, Ostermeier S, Hurschler C et al (2010) Quadriceps force in relation of intrinsic anteroposterior stability of TKA design. Arch Orthop Trauma Surg 130(1):1–9. doi: 10.1007/s00402-009-0927-4 CrossRefPubMedGoogle Scholar
  40. 40.
    Marmon AR, Milcarek BI, Snyder-Mackler L (2014) Associations between knee extensor power and functional performance in patients after total knee arthroplasty and normal controls without knee pain. Int J Sports Phys Ther 9(2):168–178PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pietrosimone B, Thomas AC, Saliba SA, Ingersoll CD (2014) Association between quadriceps strength and self-reported physical activity in people with knee osteoarthritis. Int J Sports Phys Ther 9(3):320–328PubMedPubMedCentralGoogle Scholar
  42. 42.
    Arthur C, Wood AM, Keenan A, Clayton A, Walmsley P, Brenkel I (2013) Ten-year results of the Press Fit Condylar Sigma total knee replacement. Bone Joint J 95-B(2):177–180. doi: 10.1302/0301-620X.95B2 CrossRefPubMedGoogle Scholar
  43. 43.
    Patil SS, Branovacki G, Martin MR, Pulido PA, Levy YD, Colwell CW (2013) 14-year median follow-up using the press-fit condylar sigma design for total knee arthroplasty. J Arthroplasty 28(8):1286–1290. doi: 10.1016/j.arth.2012.11.014 CrossRefPubMedGoogle Scholar
  44. 44.
    Kawahara S, Okazaki K, Matsuda S, Nakahara H, Okamoto S, Iwamoto Y (2013) Internal rotation of femoral component affects functional activities after TKA—survey with the 2011 Knee Society Score. J Arthroplasty 29(12):2319–2323. doi: 10.1016/j.arth.2013.11.017 CrossRefPubMedGoogle Scholar
  45. 45.
    Öztürk A, Akalın Y, Çevik N, Otuzbir A, Öztkan Y, Dostbakan Y (2016) Posterior cruciate-substituting total knee replacement recovers the flexion arc faster in the early postoperative period in knees with high varus deformity: a prospective randomized study. Arch Orthop Trauma Surg 136(7):999–1006. doi: 10.1007/s00402-016-2482-0 CrossRefPubMedGoogle Scholar
  46. 46.
    Berend ME, Small SR, Ritter MA, Buckley CA, Merk JC, Dierking WK (2010) Effects of femoral component size on proximal tibial strain with anatomic graduated components total knee arthroplasty. J Arthroplasty 25(1):58–63. doi: 10.1016/j.arth.2008.11.003 CrossRefPubMedGoogle Scholar
  47. 47.
    Young SW, Clarke HD, Graves SE, Liu Y-L, de Steiger RN (2015) Higher rate of revision in PFC sigma primary total knee arthroplasty with mismatch of femoro-tibial component sizes. J Arthroplasty 30(5):813–817. doi: 10.1016/j.arth.2014.11.035 CrossRefPubMedGoogle Scholar
  48. 48.
    Minoda Y, Ikebuchi M, Mizokawa S, Ohta Y, Nakamura H (2016) Mobile-bearing TKA improved the anteroposterior joint stability in mid-flexion range comparing to fixed-bearing TKA. Arch Orthop Trauma Surg 136(11):1601–1606. doi: 10.1007/s00402-016-2567-9 CrossRefPubMedGoogle Scholar
  49. 49.
    Zingde SM, Leszko F, Sharma A, Mahfouz MR, Komistek RD, Dennis DA (2014) In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res 472(1):254–262. doi: 10.1007/s11999-013-3257-3 CrossRefPubMedGoogle Scholar
  50. 50.
    Banks SA, Harman MK, Bellemans J (2003) Making sense of knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am 85:64–72. doi: 10.1097/00003086-200211000-00046 CrossRefPubMedGoogle Scholar
  51. 51.
    Conrad DN, Dennis DA (2014) Patellofemoral crepitus after total knee arthroplasty: etiology and preventive measures. Clin Orthop Surg 6(1):9–19. doi: 10.4055/cios.2014.6.1.9 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fukunaga K, Kobayashi A, Minoda Y (2009) The incidence of the patellar clunk syndrome in a recently designed mobile-bearing posteriorly stabilised total knee replacement. J Bone Jt Surg Br 91(4):463–468. doi: 10.1302/0301-620X.91B4 CrossRefGoogle Scholar
  53. 53.
    Li C, Hosseini A, Tsai TY, Kwon YM, Li G (2015) Articular contact kinematics of the knee before and after a cruciate retaining total knee arthroplasty. J Orthop Res 33(3):349–358. doi: 10.1002/jor.22764 CrossRefPubMedGoogle Scholar
  54. 54.
    Shi X, Zhou Z, Shen B, Yang J, Kang P, Pei F (2015) Variations in morphological characteristics of prostheses for total knee arthroplasty leading to kinematic differences. Knee 22(1):18–23. doi: 10.1016/j.knee.2014.10.013 CrossRefPubMedGoogle Scholar
  55. 55.
    Victor J, Bellemans J (2006) Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Relat Res 452:53–58. doi: 10.1097/01.blo.0000238792.36725.1e CrossRefPubMedGoogle Scholar
  56. 56.
    Dennis DA, Komistek RD, Mahfouz MR (2005) Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop Relat Res 440:88–95. doi: 10.1097/01.blo.0000185464.23505.6e CrossRefPubMedGoogle Scholar
  57. 57.
    Wasielewski RC, Komistek RD, Zingde SM, Sheridan KC, Mahfouz MR (2008) Lack of axial rotation in mobile-bearing knee designs. Clin Orthop Relat Res 466(11):2662–2668. doi: 10.1007/s11999-008-0354-9 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fantozzi S, Leardini A, Banks SA, Marcacci M, Giannini S, Catani F (2004) Dynamic in-vivo tibio-femoral and bearing motions in mobile bearing knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 12(2):144–151. doi: 10.1007/s00167-003-0384-5 CrossRefPubMedGoogle Scholar
  59. 59.
    Ishii Y, Noguchi H, Sato J, Todoroki K, Toyabe S (2015) Rotational alignment of tibial components in mobile-bearing TKA: posterior substituted vs. PCL retaining. Arch Orthop Trauma Surg 135(9):1299–1305. doi: 10.1007/s00402-015-2275-x CrossRefPubMedGoogle Scholar
  60. 60.
    Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27(7):871–878. doi: 10.1002/jor.20844 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Almquist PO, Ekdahl C, Isberg P-E, Fridén T (2013) Knee rotation in healthy individuals related to age and gender. J Orthop Res 31(1):23–28. doi: 10.1002/jor.22184 CrossRefPubMedGoogle Scholar
  62. 62.
    Moro-oka T-A, Hamai S, Miura H, Shimoto T, Higaki H et al (2008) Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 26(4):428–434. doi: 10.1002/jor.20488 CrossRefPubMedGoogle Scholar
  63. 63.
    Murakami K, Hamai S, Okazaki K, Ikebe S, Shimoto T et al (2016) In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee 23(2):221–226. doi: 10.1016/j.knee.2015.08.004 CrossRefPubMedGoogle Scholar
  64. 64.
    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246. doi: 10.1177/0363546506287299 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Koji Murakami
    • 1
  • Satoshi Hamai
    • 1
  • Ken Okazaki
    • 1
    • 2
  • Satoru Ikebe
    • 3
  • Hiroyuki Nakahara
    • 1
  • Hidehiko Higaki
    • 3
  • Takeshi Shimoto
    • 4
  • Hideki Mizu-uchi
    • 1
  • Umito Kuwashima
    • 1
  • Yukihide Iwamoto
    • 1
  1. 1.Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Katai Orthopaedic HospitalFukuokaJapan
  3. 3.Department of Biorobotics, Faculty of EngineeringKyushu Sangyo UniversityFukuokaJapan
  4. 4.Department of Information and Systems Engineering, Faculty of Information EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations