Skip to main content

Advertisement

Log in

PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The high rigidity of metal implants may be a cause of failure after fixation of proximal humerus fractures. Carbon fiber-reinforced polyetheretherketone (PEEK) plates with a modulus similar to human cortical bone may help to overcome this problem. The present study assesses the biomechanical behavior of a PEEK plate compared with a titanium locking plate.

Materials and methods

Unstable two- and three-part fractures were simulated in 12 pairs of cadaveric humeri and were fixed with either a PEEK or a titanium locking plate using a pairwise comparison. With an optical motion capture system, the stiffness, failure load, plate bending, and the relative motion at the bone–implant interface and at the fracture site were evaluated.

Results

The mean load to failure for two- and three-part fracture fixations was, respectively, 191 N (range 102–356 N) and 142 N (range 102–169 N) in the PEEK plate group compared with 286 N (range 191–395 N) and 258 N (range 155–366 N) in the titanium locking plate group. The PEEK plate showed significantly more bending in both the two- and three-part fractures (p < 0.05), an increased relative motion at the bone–implant interface and lower stiffness values (p < 0.05).

Conclusion

In this biomechanical study on unstable proximal humerus fractures, fixation with a PEEK plate showed lower fixation strength and increased motion at the bone–implant interface compared with a titanium locking plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bell JE, Leung BC, Spratt KF, Koval KJ, Weinstein JD, Goodman DC, Tosteson AN (2011) Trends and variation in incidence, surgical treatment, and repeat surgery of proximal humeral fractures in the elderly. J Bone Jt Surg Am 93(2):121–131. doi:10.2106/JBJS.I.01505

    Article  Google Scholar 

  2. Warriner AH, Patkar NM, Curtis JR, Delzell E, Gary L, Kilgore M, Saag K (2011) Which fractures are most attributable to osteoporosis? J Clin Epidemiol 64(1):46–53. doi:10.1016/j.jclinepi.2010.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Palvanen M, Kannus P, Niemi S, Parkkari J (2006) Update in the epidemiology of proximal humeral fractures. Clin Orthop Relat Res 442:87–92

    Article  PubMed  Google Scholar 

  4. Gupta AK, Harris JD, Erickson BJ, Abrams GD, Bruce B, McCormick F, Nicholson GP, Romeo AA (2014) Surgical management of complex proximal humerus fractures—a systematic review of 92 studies including 4500 patients. J Orthop Trauma. doi:10.1097/BOT.0000000000000229

    Google Scholar 

  5. Schliemann B, Siemoneit J, Theisen C, Kösters C, Weimann A, Raschke MJ (2012) Complex fractures of the proximal humerus in the elderly—outcome and complications after locking plate fixation. Musculoskelet Surg 96(Suppl 1):S3–S11. doi:10.1007/s12306-012-0181-8

    Article  PubMed  Google Scholar 

  6. Sproul RC, Iyengar JJ, Devcic Z, Feeley BT (2011) A systematic review of locking plate fixation of proximal humerus fractures. Injury 42(4):408–413. doi:10.1016/j.injury.2010.11.058

    Article  PubMed  Google Scholar 

  7. Thanasas C, Kontakis G, Angoules A, Limb D, Giannoudis P (2009) Treatment of proximal humerus fractures with locking plates: a systematic review. J Shoulder Elbow Surg 18(6):837–844. doi:10.1016/j.jse.2009.06.004

    Article  PubMed  Google Scholar 

  8. Maldonado ZM, Seebeck J, Heller MO, Brandt D, Hepp P, Lill H, Duda GN (2003) Straining of the intact and fractured proximal humerus under physiological-like loading. J Biomech 36(12):1865–1873

    Article  PubMed  Google Scholar 

  9. Gardner MJ, Nork SE, Huber P, Krieg JC (2010) Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41(6):652–656. doi:10.1016/j.injury.2010.02.022

    Article  PubMed  Google Scholar 

  10. Epari DR, Kassi JP, Schell H, Duda GN (2007) Timely fracture-healing requires optimization of axial fixation stability. J Bone Jt Surg Am 89(7):1575–1585. doi:10.2106/JBJS.F.00247

    Google Scholar 

  11. Brunner A, Resch H, Babst R, Kathrein S, Fierlbeck J, Niederberger A, Schmolz W (2012) The Humerusblock NG: a new concept for stabilization of proximal humeral fractures and its biomechanical evaluation. Arch Orthop Trauma Surg 132(7):985–992. doi:10.1007/s00402-012-1503-x

    Article  PubMed  Google Scholar 

  12. Brunner A, Weller K, Thormann S, Jockel JA, Babst R (2010) Closed reduction and minimally invasive percutaneous fixation of proximal humerus fractures using the Humerusblock. J Orthop Trauma 24(7):407–413. doi:10.1097/BOT.0b013e3181c81b1c

    Article  PubMed  Google Scholar 

  13. Kralinger F, Gschwentner M, Wambacher M, Smekal V, Haid C (2008) Proximal humeral fractures: what is semi-rigid? Biomechanical properties of semi-rigid implants, a biomechanical cadaver based evaluation. Arch Orthop Trauma Surg 128(2):205–210. doi:10.1007/s00402-007-0512-7

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2013) Carbon fiber reinforced PEEK optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228. doi:10.1016/j.jmbbm.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  15. Röderer G, Scola A, Schmolz W, Gebhard F, Windolf M, Hofmann-Fliri L (2013) Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury 44(10):1327–1332. doi:10.1016/j.injury.2013.05.008

    Article  PubMed  Google Scholar 

  16. Unger S, Erhart S, Kralinger F, Blauth M, Schmoelz W (2012) The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury 43(10):1759–1763. doi:10.1016/j.injury.2012.07.003

    Article  PubMed  Google Scholar 

  17. Lill H, Hepp P, Korner J, Kassi JP, Verheyden AP, Josten C, Duda GN (2003) Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg 123(2–3):74–81. doi:10.1007/s00402-002-0465-9

    CAS  PubMed  Google Scholar 

  18. Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM (2009) A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Jt Surg Am 91(3):620–627. doi:10.2106/JBJS.H.00408

    Article  Google Scholar 

  19. Dietrich M, Meier C, Lattmann T, Zingg U, Gruninger P, Platz A (2008) Complex fracture of the proximal humerus in the elderly. Locking plate osteosynthesis vs hemiarthroplasty. Chirurg 79(3):231–240. doi:10.1007/s00104-007-1436-z

    Article  CAS  PubMed  Google Scholar 

  20. Schliemann B, Hartensuer R, Koch T, Theisen C, Raschke MJ, Kösters C, Weimann A (2015) Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year-results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg 24(8):1282–1288. doi:10.1016/j.jse.2014.12.028

    Article  PubMed  Google Scholar 

  21. Krappinger D, Bizzotto N, Riedmann S, Kammerlander C, Hengg C, Kralinger FS (2011) Predicting failure after surgical fixation of proximal humerus fractures. Injury 42(11):1283–1288. doi:10.1016/j.injury.2011.01.017

    Article  PubMed  Google Scholar 

  22. Owsley KC, Gorczyca JT (2008) Fracture displacement and screw cutout after open reduction and locked plate fixation of proximal humeral fractures [corrected]. J Bone Jt Surg Am 90(2):233–240. doi:10.2106/JBJS.F.01351

    Article  Google Scholar 

  23. Katthagen JC, Schwarze M, Meyer-Kobbe J, Voigt C, Hurschler C, Lill H (2014) Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures. Clin Biomech (Bristol, Avon) 29(7):735–741. doi:10.1016/j.clinbiomech.2014.06.008

    Article  Google Scholar 

  24. Zhang L, Zheng J, Wang W, Lin G, Huang Y, Zheng J, Edem Prince GA, Yang G (2011) The clinical benefit of medial support screws in locking plating of proximal humerus fractures: a prospective randomized study. Int Orthop 35(11):1655–1661. doi:10.1007/s00264-011-1227-5

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang W, Zeng L, Liu Y, Pan Y, Zhang W, Zhang C, Zeng B, Chen Y (2014) The mechanical benefit of medial support screws in locking plating of proximal humerus fractures. PLoS One 9(8):e103297. doi:10.1371/journal.pone.0103297

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schliemann B, Seifert R, Rosslenbroich SB, Theisen C, Wahnert D, Raschke MJ, Weimann A (2015) Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. J Shoulder Elbow Surg 4(12):1968–1973. doi:10.1016/j.jse.2015.06.028

    Article  Google Scholar 

  27. Kathrein S, Kralinger F, Blauth M, Schmoelz W (2013) Biomechanical comparison of an angular stable plate with augmented and non-augmented screws in a newly developed shoulder test bench. Clin Biomech (Bristol, Avon) 28(3):273–277. doi:10.1016/j.clinbiomech.2012.12.013

    Article  Google Scholar 

  28. Roderer G, Gebhard F, Krischak G, Wilke HJ, Claes L (2011) Biomechanical in vitro assessment of fixed angle plating using a new concept of locking for the treatment of osteoporotic proximal humerus fractures. Int Orthop 35(4):535–541. doi:10.1007/s00264-010-1021-9

    Article  PubMed  Google Scholar 

  29. Euler SA, Hengg C, Wambacher M, Spiegl UJ, Kralinger F (2014) Allogenic bone grafting for augmentation in two-part proximal humeral fracture fixation in a high-risk patient population. Arch Orthop Trauma Surg. doi:10.1007/s00402-014-2128-z

    Google Scholar 

  30. Gardner MJ, Weil Y, Barker JU, Kelly BT, Helfet DL, Lorich DG (2007) The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 21(3):185–191. doi:10.1097/BOT.0b013e3180333094

    Article  PubMed  Google Scholar 

  31. Neviaser AS, Hettrich CM, Beamer BS, Dines JS, Lorich DG (2011) Endosteal strut augment reduces complications associated with proximal humeral locking plates. Clin Orthop Relat Res 469(12):3300–3306. doi:10.1007/s11999-011-1949-0

    Article  PubMed  PubMed Central  Google Scholar 

  32. Somasundaram K, Huber CP, Babu V, Zadeh H (2013) Proximal humeral fractures: the role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates. Injury 44(4):481–487. doi:10.1016/j.injury.2012.10.030

    Article  CAS  PubMed  Google Scholar 

  33. Tan E, Lie D, Wong MK (2014) Early outcomes of proximal humerus fracture fixation with locking plate and intramedullary fibular strut graft. Orthopedics 37(9):e822–e827. doi:10.3928/01477447-20140825-60

    Article  PubMed  Google Scholar 

  34. Zhu L, Liu Y, Yang Z, Li H, Wang J, Zhao C, Chen X, Zhang Y (2014) Locking plate fixation combined with iliac crest bone autologous graft for proximal humerus comminuted fracture. Chin Med J 127(9):1672–1676

    PubMed  Google Scholar 

  35. Westerhoff P, Graichen F, Bender A, Halder A, Beier A, Rohlmann A, Bergmann G (2009) In vivo measurement of shoulder joint loads during activities of daily living. J Biomech 42(12):1840–1849. doi:10.1016/j.jbiomech.2009.05.035

    Article  CAS  PubMed  Google Scholar 

  36. Katthagen JC, Schwarze M, Warnhoff M, Voigt C, Hurschler C, Lill H (2016) Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 47(3):617–624. doi:10.1016/j.injury.2016.01.004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund “Innovative Medical Research” (IMF, Grant SC 211305 to B.S. and A.W.) of the University of Münster Medical School and by the ASSOCIATION FOR ORTHOPAEDIC RESEARCH (AFOR). B.S. had a research fellowship from the University of Münster Medical School. Depuy Synthes and Lima Corporate provided implants and instruments used in this project. Neither funding source played a role in the study design, collection, analysis, and interpretation of the data and in the preparation and editing process of the manuscript. The manuscript was edited by the American Journal Experts service (http://www.AJE.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Schliemann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Twelve pairs’ human cadaveric specimens were used for the study. In life, all the donors provided written consent of their own free will for the use of their bodies for research purposes. Institutional review board approval was obtained prior to the study (IRB No. 2014-421-f-N).

Additional information

B. Schliemann and R. Seifert contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schliemann, B., Seifert, R., Theisen, C. et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg 137, 63–71 (2017). https://doi.org/10.1007/s00402-016-2620-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2620-8

Keywords

Navigation