Skip to main content

Advertisement

Log in

Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit.

Materials and methods

In preliminary studies typical “drilling patterns” of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti–N)] were tested.

Results

The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes).

Conclusions

If the default AISI 440A drill bit cannot be checked by 20–30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Augustin G, Zigman T, Davila S et al (2012) Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol, Avon) 27(4):313–325. doi:10.1016/j.clinbiomech.2011.10.010

  2. Augustin G, Davila S, Mihoci K et al (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128(1):71–77

    Article  PubMed  Google Scholar 

  3. Augustin G, Davila S, Udilljak T et al (2012) Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop 36(7):1449–1456. doi:10.1007/s00264-012-1491-z

    Article  PubMed Central  PubMed  Google Scholar 

  4. Matthews LS, Hirsch C (1972) Temperature measured in human cortical bone when drilling. J Bone Joint Surg 54A:297–308

    Google Scholar 

  5. Berman AT, Reid JS, Yanicko DR Jr et al (1984) Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clin Orthop 186:284–292

    PubMed  Google Scholar 

  6. Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18:261–268

    Article  CAS  PubMed  Google Scholar 

  7. Natali C, Ingle P, Dowell J (1996) Orthopaedic bone drills—can they be improved? Temperature changes near the drilling face. J Bone Joint Surg Br 78(3):357–362

    CAS  PubMed  Google Scholar 

  8. Schmelzeisen H (1990) Der Bohrvorgang in der Kortikalis. Springer, Berlin

  9. Fuchsberger A (1968) Die Zerspantemperatur beim Bohren von Knochen. Medizinische Orthopädische Technik 106(H.2):54–47

  10. Lee J, Rabin Y, Ozdoganlar OB (2011) A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys 33(10):1234–1244. doi:10.1016/j.medengphy.2011.05.014

    Article  PubMed  Google Scholar 

  11. Bachus KN, Rondina MT, Hutchinson DT (2000) The effects of drilling force on cortical temperatures and their duration: an in vitro study. Med Eng Phys 22(10):685–691

    Article  CAS  PubMed  Google Scholar 

  12. Lavelle C, Wedgwood D (1980) Effect of internal irrigation on frictional heat generated from bone drilling. J Oral Surg 38(7):499–503

    CAS  PubMed  Google Scholar 

  13. Eriksson AR, Albrektsson T, Albrektsson B (1984) Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta Orthop Scand 55(6):629–631

    Article  CAS  PubMed  Google Scholar 

  14. Davidson SR, James DF (2003) Drilling in bone: modeling heat generation and temperature distribution. J Biomech Eng 125(3):305–314

    Article  PubMed  Google Scholar 

  15. Alajmo G, Schlegel U, Gueorguiev B et al (2012) Plunging when drilling: effect of using blunt drill bits. J Orthop Trauma 26(8):482–487. doi:10.1097/BOT.0b013e3182336ec3

    Article  PubMed  Google Scholar 

  16. Clement H, Heidari N, Grechenig W et al (2012) Drilling, not a benign procedure: laboratory simulation of true drilling depth. Injury 43(6):950–952. doi:10.1016/j.injury.2011.11.017

    Article  PubMed  Google Scholar 

  17. Pichler W, Grechenig W, Clement H et al (2009) Perforation of the third extensor compartment by the drill bit during palmar plating of the distal radius. J Hand Surg Eur 34(3):333–335. doi:10.1177/1753193408099821

    Article  CAS  Google Scholar 

  18. Eriksson RA, Adell R (1986) Temperatures during drilling for the placement of implants using the Osseo integration technique. J Oral Maxillofac Surg 44(1):4–7

    Article  CAS  PubMed  Google Scholar 

  19. Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67(2):182–188

    PubMed  Google Scholar 

  20. Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9(9):553–559

    Article  CAS  PubMed  Google Scholar 

  21. Wang W, Shi Y, Yang N et al (2014) Experimental analysis of drilling process in cortical bone. Med Eng Phys 36(2):261–266. doi:10.1016/j.medengphy.2013.08.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Puchwein.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clement, H., Zopf, C., Brandner, M. et al. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery. Arch Orthop Trauma Surg 135, 1675–1682 (2015). https://doi.org/10.1007/s00402-015-2338-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2338-z

Keywords

Navigation