Skip to main content

Advertisement

Log in

Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design

  • Hip Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Conventional cementless total hip arthroplasty already shows very good clinical results. Nevertheless, implant revision is often accompanied by massive bone loss. The new shorter GTS™ stem has been introduced to conserve femoral bone stock. However, no long-term clinical results were available for this implant. A biomechanical comparison of the GTS™ stem with the clinically well-established CLS® stem was therefore preformed to investigate the targeted stem philosophy.

Materials and methods

Four GTS™ stems and four CLS® stems were implanted in a standardized manner in eight synthetic femurs. A high-precision measuring device was used to determine micromotions of the stem and bone during different load applications. Calculation of relative micromotions at the bone–implant interface allowed the rotational implant stability and the bending behavior of the stem to be determined.

Results

Lowest relative micromotions were detected near the lesser trochanter within the proximal part of both stems. Maximum relative micromotions were measured near the distal tip of the stems, indicating a proximal fixation of both stems. For the varus–valgus–torque application, a comparable stem bending behavior was shown for both stems.

Conclusion

Both stems seem to provide a comparable and adequate primary stability. The shortened GTS™ design has a comparable rotational stability and bone–implant flexibility compared to a conventional stem. This study demonstrates that the CLS® stem and the GTS™ stem exhibit similar biomechanical behavior. However, a clinical confirmation of these experimental results is still required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garellick G, Kaerrholm J, Rogmark C, Rolfson O, Herberts P (2012) Swedish hip arthroplasty register: annual report 2011

  2. Streit M, Schröder K, Körber M, Merle C, Gotterbarm T, Ewerbeck V, Aldinger P (2012) High survival in young patients using a second generation uncemented total hip replacement. Int Orthop (SICOT) 36(6):1129–1136. doi:10.1007/s00264-011-1399-z

    Article  Google Scholar 

  3. Suckel A, Geiger F, Kinzl L, Wulker N, Garbrecht M (2009) Long-term results for the uncemented zweymuller/alloclassic hip endoprosthesis: a 15-year minimum follow-up of 320 hip operations. J Arthroplasty 24(6):846–853. doi:10.1016/j.arth.2008.03.021

    Article  PubMed  Google Scholar 

  4. Troelsen A, Malchau E, Sillesen N, Malchau H (2013) A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox. Clin Orthop Relat Res 471(7):2052–2059. doi:10.1007/s11999-013-2941-7

    Article  PubMed  Google Scholar 

  5. Santori FS, Santori N (2010) Mid-term results of a custom-made short proximal loading femoral component. J Bone Joint Surg 92B(9):1231–1237. doi:10.1302/0301-620x.92b9.24605

    Article  Google Scholar 

  6. Steinhauser E (2006) Biomechanische Grundlagen der Implantatverankerung. In: Ossäre integration. Springer, Heidelberg, pp 16–23. doi:10.1007/978-3-540-35687-5_2

  7. Bensmann G (1999) Cementless fixation of endoprostheses. Biomed Eng 35(s3):44–47. doi:10.1515/bmte.1990.35.s3.44

    Article  Google Scholar 

  8. Biomet (2012) GTS (global tissue sparring) femoral hip system. GTS brochure

  9. Gortz W, Nagerl UV, Nagerl H, Thomsen M (2002) Spatial micromovements of uncemented femoral components after torsional loads. J Biomech Eng Trans Asme 124(6):706–713. doi:10.1115/1.1517565

    Article  CAS  Google Scholar 

  10. Jakubowitz E, Bitsch RG, Heisel C, Lee C, Kretzer JP, Thomsen MN (2008) Primary rotational stability of cylindrical and conical revision hip stems as a function of femoral bone defects: an in vitro comparison. J Biomech 41(14):3078–3084. doi:10.1016/j.jbiomech.2008.06.002

    Article  PubMed  Google Scholar 

  11. Jakubowitz E, Kinkel S, Nadorf J, Heisel C, Kretzer JP, Thomsen MN (2011) The effect of multifilaments and monofilaments on cementless femoral revision hip components: an experimental study. Clin Biomech 26(3):257–261. doi:10.1016/j.clinbiomech.2010.11.004

    Article  Google Scholar 

  12. Dohle J, Becker W, Braun M (2001) Radiologische Analyse der ossären Integration nach Implantation der Alloclassic-Zweymüller-Hüft-TEP (Radiological analysis of osseointegration after implantation of the zweymüller-alloclassic total hip system). Z Orthop Ihre Grenzgeb 319(06):517–524. doi:10.1055/s-2001-19234

    Article  Google Scholar 

  13. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty: a five-year longitudinal study. J Bone Joint Surg, Br 86B(1):20–26. doi:10.1302/0301-620x.86b1.14637

    Google Scholar 

  14. Schmidbauer U, Brendel T, Kunze KG, Nietert M, Ecke H (1993) Dynamische Kräftemessung bei der Implantation von Total-Endoprothesen des Hüftgelenkes (Dynamic force measurement in implantation of total endoprostheses of the hip joint). Unfallchirurgie 19(1):11–15. doi:10.1007/bf02588222

    Article  CAS  PubMed  Google Scholar 

  15. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990. doi:10.1016/0021-9290(93)90058-M

    Article  CAS  PubMed  Google Scholar 

  16. Nägerl H, Kubein-Meesenburg D, Schäfer W, Cotta H, Thomsen M, Strachwitz B, Fanghänel J (1996) Messung der räumlichen Mikrobewegung des Femurschaftes von Endoprothesen in Abhängigkeit des räumlichen Kraftsystems (Measurement of the spatial micromovement of hip endoprostheses as a function of the spatial force system. a pilot study). Z Orthop Unfall 134(02):99–110. doi:10.1055/s-2008-1039780

    Google Scholar 

  17. Fottner A, Peter CV, Schmidutz F, Wanke-Jellinek L, Schröder C, Mazoochian F, Jansson V (2011) Biomechanical evaluation of different offset versions of a cementless hip prosthesis by 3-dimensional measurement of micromotions. Clin Biomech 26(8):830–835. doi:10.1016/j.clinbiomech.2011.04.001

    Article  Google Scholar 

  18. Chechik O, Khashan M, Lador R, Salai M, Amar E (2013) Surgical approach and prosthesis fixation in hip arthroplasty world wide. Arch Orthop Trauma Surg 133(11):1595–1600. doi:10.1007/s00402-013-1828-0

    Article  PubMed  Google Scholar 

  19. Khanuja HS, Vakil JJ, Goddard MS, Mont MA (2011) Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg 93(5):500–509. doi:10.2106/jbjs.j.00774

    Article  PubMed  Google Scholar 

  20. Cinotti G, Della Rocca A, Sessa P, Ripani FR, Giannicola G (2013) Thigh pain, subsidence and survival using a short cementless femoral stem with pure metaphyseal fixation at minimum 9-year follow-up. Orthop Traumatol Surg Res 99(1):30–36. doi:10.1016/j.otsr.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  21. Huiskes R, Weinans H, Vanrietbergen B (1992) The relationship between stress shielding and bone-resorption around total hip stems and effects of flexible materials. Clin Orthop Relat Res 274:124–134

    PubMed  Google Scholar 

  22. Prokopetz J, Losina E, Bliss R, Wright J, Baron J, Katz J (2012) Risk factors for revision of primary total hip arthroplasty: a systematic review. BMC Musculoskelet Disord 13(1):251

    Article  PubMed Central  PubMed  Google Scholar 

  23. Morales de Cano J, Gordo C, Illobre J (2013) Early clinical results of a new conservative hip stem. Eur J Orthop Surg Traumatol 1–5. doi:10.1007/s00590-013-1198-x

  24. Kress A, Schmidt R, Nowak T, Nowak M, Haeberle L, Forst R, Mueller L (2012) Stress-related femoral cortical and cancellous bone density loss after collum femoris preserving uncemented total hip arthroplasty: a prospective 7-year follow-up with quantitative computed tomography. Arch Orthop Trauma Surg 132(8):1111–1119. doi:10.1007/s00402-012-1537-0

    Article  PubMed  Google Scholar 

  25. Karrholm J, Borssen B, Lowenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg 76B(6):912–917

    Google Scholar 

  26. Kim S-J, Kim M-R, Rim J-S, Chung S-M, Shin S-W (2010) Comparison of implant stability after different implant surface treatments in dog bone. J Appl Oral Sci 18:415–420

    Article  PubMed  Google Scholar 

  27. Rieger JS, Jaeger S, Schuld C, Kretzer JP, Bitsch RG (2013) A vibrational technique for diagnosing loosened total hip endoprostheses: an experimental sawbone study. Med Eng Phys 35(3):329–337. doi:10.1016/j.medengphy.2012.05.007

    Article  PubMed  Google Scholar 

  28. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41(3):587–594. doi:10.1016/j.jbiomech.2007.10.009

    Article  PubMed  Google Scholar 

  29. Pettersen SH, Wik TS, Skallerud B (2009) Subject specific finite element analysis of implant stability for a cementless femoral stem. Clin Biomech 24(6):480–487. doi:10.1016/j.clinbiomech.2009.03.009

    Article  Google Scholar 

  30. Umeda N, Saito M, Sugano N, Ohzono K, Nishii T, Sakai T, Yoshikawa H, Ikeda D, Murakami A (2003) Correlation between femoral neck version and strain on the femur after insertion of femoral prosthesis. J Orthop Sci 8(3):381–386. doi:10.1007/s10776-002-0635-2

    Article  PubMed  Google Scholar 

  31. Westphal FM, Bishop N, Honl M, Hille E, Püschel K, Morlock MM (2006) Migration and cyclic motion of a new short-stemmed hip prosthesis: a biomechanical in vitro study. Clin Biomech 21(8):834–840. doi:10.1016/j.clinbiomech.2006.04.004

    Article  CAS  Google Scholar 

  32. Decking J, Gerber A, Kränzlein J, Meurer A, Böhm B, Plitz W (2004) Die Primärstabilität von manuell und roboterassistiert implantierten Hüftendoprothesenstielen: eine biomechanische Untersuchung an Kunstfemora (A biomechanical study on the initial stability of thr stems after manual and robot-assisted implantation in synthetic femora). Z Orthop Ihre Grenzgeb 12(03):309–313. doi:10.1055/s-2004-822794

    Article  Google Scholar 

  33. Østbyhaug PO, Klaksvik J, Romundstad P, Aamodt A (2010) Primary stability of custom and anatomical uncemented femoral stems: a method for three-dimensional in vitro measurement of implant stability. Clin Biomech 25(4):318–324. doi:10.1016/j.clinbiomech.2009.12.012

    Article  Google Scholar 

  34. Fottner A, Schmid M, Birkenmaier C, Mazoochian F, Plitz W, Volkmar J (2009) Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions. Clin Biomech 24(5):429–434. doi:10.1016/j.clinbiomech.2009.02.007

    Article  Google Scholar 

  35. Falez F, Casella F, Panegrossi G, Favetti F, Barresi C (2008) Perspectives on metaphyseal conservative stems. J Orthopaed Traumatol 9(1):49–54. doi:10.1007/s10195-008-0105-4

    Article  CAS  Google Scholar 

  36. Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Dürselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech 27(2):158–164. doi:10.1016/j.clinbiomech.2011.08.004

    Article  Google Scholar 

  37. Gustke K (2012) Short stems for total hip arthroplasty: Initial experience with the Fitmore™ stem. J Bone Joint Surg 94B(11 suppl A):47–51. doi:10.1302/0301-620x.94b11.30677

    Article  Google Scholar 

  38. Logroscino G, Ciriello V, DŒAntonio E (2011) Bone integration of new stemless hip implants (proxima vs. nanos). A DXA study: preliminary results. Int J Immunopathol Pharmacol 24:113–116

    CAS  PubMed  Google Scholar 

  39. Ghera S, Pavan L (2009) The DePuy Proxima hip: a short stem for total hip arthroplasty. Early experience and technical considerations. Hip Int 19(3):215–220

    PubMed  Google Scholar 

Download references

Conflict of interest

This work was performed at the Laboratory of Biomechanics and Implant Research, Department of Orthopedics and Traumatology, University Hospital Heidelberg, Heidelberg, Germany. The work was partly funded through Biomet GmbH. The funding party had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nadorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadorf, J., Thomsen, M., Gantz, S. et al. Fixation of the shorter cementless GTS™ stem: biomechanical comparison between a conventional and an innovative implant design. Arch Orthop Trauma Surg 134, 719–726 (2014). https://doi.org/10.1007/s00402-014-1946-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-014-1946-3

Keywords

Navigation