Archives of Orthopaedic and Trauma Surgery

, Volume 133, Issue 11, pp 1493–1499 | Cite as

Biomechanical evaluation of the primary stability of pedicle screws after augmentation with an innovative bone stabilizing system

  • K. Wegmann
  • S. Gick
  • C. Heidemann
  • D. Pennig
  • W. F. Neiss
  • L. P. Müller
  • P. Eysel
  • R. Sobottke
Orthopaedic Surgery

Abstract

Introduction

In today’s aging population, diminished bone quality often affects the outcome of surgical treatment. This occurs especially when surgical implants must be fixed to bone, as it occurs when lumbar fusion is performed with pedicle screws. Besides Polymethylmethacrylate (PMMA) injection, several techniques have been developed to augment pedicle screws. The aim of the current study was to evaluate the primary stability of an innovative system (IlluminOss™) for the augmentation of pedicle screws in an experimental cadaveric setup. IlluminOss™ is an innovative technology featuring cement with similar biochemical characteristics to aluminum-free glass-polyalkenoate cement (GPC).

Materials and methods

IlluminOss™ was inserted transpedicularly via a balloon/catheter system in 40 human cadaveric lumbar vertebrae. For comparability, each vertebra was treated bilaterally with pedicle screws, augmented and non-augmented. The maximum failure load during pull out test was documented by a universal material testing machine.

Results

The results showed significantly higher failure loads for the augmented pedicle screws (Median 555.0 ± 261.0 N, Min. 220.0 N, Max. 1,500.0 N), compared to the native screws (Median 325.0 ± 312.1 N, Min. 29.0 N, Max. 1,400.0 N).

Conclusions

Based on these data, we conclude the IlluminOss™ system can be used to augment primary screw stability regarding axial traction, compared to native screws. The IlluminOss™ monomer offers ease of control for use in biological tissues. In contrast to PMMA, no relevant heat is generated during the hardening process and there is no risk of embolism. Further studies are necessary to evaluate the usefulness of the IlluminOss™ system in the in vivo augmentation of pedicle screws in the future.

Keywords

Osteoporosis Lumbar fusion Augmentation Pedicle screw Primary stability Glass-polyalkenoate cement 

References

  1. 1.
    Wright NC, Saag KG (2012) From fracture risk prediction to evaluating fracture patterns: recent advances in the epidemiology of osteoporosis. Curr Rheumatol Rep. doi:10.1007/s11926-012-0251-9 PubMedGoogle Scholar
  2. 2.
    Bow CH, Cheung E, Cheung CL, Xiao SM, Loong C, Soong C, Tan KC, Luckey MM, Cauley JA, Fujiwara S, Kung AW (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporos Int 23(3):879–885. doi:10.1007/s00198-011-1627-9 PubMedCrossRefGoogle Scholar
  3. 3.
    Jager PL, Jonkman S, Koolhaas W, Stiekema A, Wolffenbuttel BH, Slart RH (2011) Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations. Osteoporos Int 22(4):1059–1068. doi:10.1007/s00198-010-1293-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Shi L, Wang L, Zhang Y, Guo Z, Wu ZX, Liu D, Gao MX, Chen H, Fu SC, Lei W (2012) Improving fixation strength of pedicle screw by microarc oxidation treatment: an experimental study of osteoporotic spine in sheep. J Orthop Res. doi:10.1002/jor.22072 Google Scholar
  5. 5.
    Liu D, Wu ZX, Pan XM, Fu SC, Gao MX, Shi L, Lei W (2011) Biomechanical comparison of different techniques in primary spinal surgery in osteoporotic cadaveric lumbar vertebrae: expansive pedicle screw versus polymethylmethacrylate-augmented pedicle screw. Arch Orthop Trauma Surg 131(9):1227–1232. doi:10.1007/s00402-011-1290-9 PubMedCrossRefGoogle Scholar
  6. 6.
    Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd (2001) Lumbosacral fixation using expandable pedicle screws. An alternative in reoperation and osteoporosis. Spine J 1(2):109–114 S1529-9430(01)00020-1PubMedCrossRefGoogle Scholar
  7. 7.
    Amendola L, Gasbarrini A, Fosco M, Simoes CE, Terzi S, De Iure F, Boriani S (2011) Fenestrated pedicle screws for cement-augmented purchase in patients with bone softening: a review of 21 cases. J Orthop Traumatol 12(4):193–199. doi:10.1007/s10195-011-0164-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Krappinger D, Kastenberger TJ, Schmid R (2012) Augmented posterior instrumentation for the treatment of osteoporotic vertebral body fractures. Oper Orthop Traumatol. doi:10.1007/s00064-011-0098-7 PubMedGoogle Scholar
  9. 9.
    Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976) 32(10):1077–1083. doi:10.1097/01.brs.0000261566.38422.40 CrossRefGoogle Scholar
  10. 10.
    Hu MH, Wu HT, Chang MC, Yu WK, Wang ST, Liu CL (2011) Polymethylmethacrylate augmentation of the pedicle screw: the cement distribution in the vertebral body. Eur Spine J 20(8):1281–1288. doi:10.1007/s00586-011-1824-4 PubMedCrossRefGoogle Scholar
  11. 11.
    Pinera AR, Duran C, Lopez B, Saez I, Correia E, Alvarez L (2011) Instrumented lumbar arthrodesis in elderly patients: prospective study using cannulated cemented pedicle screw instrumentation. Eur Spine J 20(Suppl 3):408–414. doi:10.1007/s00586-011-1907-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Li Y, Cheng H, Liu ZC, Wu JW, Yu L, Zang Y, He Q, Lei W, Wu ZX (2013) In vivo study of pedicle screw augmentation using bioactive glass in osteoporosis sheep. J Spinal Disord Tech 26(4):E118–E123. doi:10.1097/BSD.0b013e31827695e2 PubMedCrossRefGoogle Scholar
  13. 13.
    Folsch C, Goost H, Figiel J, Paletta JR, Schultz W, Lakemeier S (2012) Correlation of pull-out strength of cement-augmented pedicle screws with CT-volumetric measurement of cement. Biomed Tech (Berl) 57(6):473–480. doi:10.1515/bmt-2012-0012 CrossRefGoogle Scholar
  14. 14.
    Becker S, Chavanne A, Spitaler R, Kropik K, Aigner N, Ogon M, Redl H (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17(11):1462–1469. doi:10.1007/s00586-008-0769-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7(1):47–53. doi:10.3171/SPI-07/07/047 PubMedCrossRefGoogle Scholar
  16. 16.
    Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N (2012) Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech 25(2):E28–E35. doi:10.1097/BSD.0b013e318228bbed PubMedCrossRefGoogle Scholar
  17. 17.
    Chrea B, Malempati H, Campbell JR, Khan S, Ching RP, Lee MJ (2013) Enhancing pedicle screw fixation in the lumbar spine utilizing allograft bone plug interference fixation. J Spinal Disord Tech. doi:10.1097/BSD.0b013e318290fc84 PubMedGoogle Scholar
  18. 18.
    Chao KH, Lai YS, Chen WC, Chang CM, McClean CJ, Fan CY, Chang CH, Lin LC, Cheng CK (2013) Biomechanical analysis of different types of pedicle screw augmentation: a cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys. doi:10.1016/j.medengphy.2013.04.007 S1350-4533(13)00100-8Google Scholar
  19. 19.
    Haasum Y, Fastbom J, Fratiglioni L, Johnell K (2012) Undertreatment of osteoporosis in persons with dementia? A population-based study. Osteoporos Int 23(3):1061–1068. doi:10.1007/s00198-011-1636-8 PubMedCrossRefGoogle Scholar
  20. 20.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. doi:10.1359/jbmr.061113 PubMedCrossRefGoogle Scholar
  21. 21.
    Dempster DW (2011) Osteoporosis and the burden of osteoporosis-related fractures. Am J Manag Care 17(Suppl 6):S164–S169. doi:49414 PubMedGoogle Scholar
  22. 22.
    DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976) 31(19 Suppl):S144–S151. doi:10.1097/01.brs.0000236893.65878.39 CrossRefGoogle Scholar
  23. 23.
    Lee JH, Park JW, Shin YH (2012) The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation. J Bone Joint Surg Br 94(1):93–97. doi:10.1302/0301-620X.94B1.27032 PubMedCrossRefGoogle Scholar
  24. 24.
    Frankel BM, Jones T, Wang C (2007) Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery 61(3):531–537. doi:10.1227/01.NEU.0000290899.15567.68 discussion 537–538PubMedCrossRefGoogle Scholar
  25. 25.
    Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg 96(3 Suppl):309–312PubMedGoogle Scholar
  26. 26.
    Pare PE, Chappuis JL, Rampersaud R, Agarwala AO, Perra JH, Erkan S, Wu C (2011) Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine (Phila Pa 1976) 36(18):E1210–E1214. doi:10.1097/BRS.0b013e318205e3af CrossRefGoogle Scholar
  27. 27.
    Deramond H, Wright NT, Belkoff SM (1999) Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 25(2 Suppl):17S–21SPubMedCrossRefGoogle Scholar
  28. 28.
    Rodrigues DC, Ordway NR, Ma CR, Fayyazi AH, Hasenwinkel JM (2011) An ex vivo exothermal and mechanical evaluation of two-solution bone cements in vertebroplasty. Spine J 11(5):432–439. doi:10.1016/j.spinee.2011.02.012 PubMedCrossRefGoogle Scholar
  29. 29.
    Petridis AK, Maslehaty H, Eichenhofer T, Gillner S, Scholz M (2013) Pulmonary embolism associated with poly(methyl methacrylate) (PMMA) after vertebroplasty. A complication more often than one thinks. Acta Neurochir (Wien) 155(2):319–320. doi:10.1007/s00701-012-1584-x CrossRefGoogle Scholar
  30. 30.
    Liu FJ, Ren H, Shen Y, Ding WY, Wang LF (2012) Pulmonary embolism caused by cement leakage after percutaneous kyphoplasty: a case report. Orthop Surg 4(4):263–265. doi:10.1111/os.12010 PubMedCrossRefGoogle Scholar
  31. 31.
    Mozaffar M, Radpay MR, Zirakzadeh H, Nabavizadeh P, Sobhiye MR, Motiei Langroudi R (2012) Intra-arterial injection of acrylic cement as a complication of percutaneous vertebroplasty. J Vasc Surg 56(4):1107–1109. doi:10.1016/j.jvs.2012.04.010 PubMedCrossRefGoogle Scholar
  32. 32.
    Morita K, Doi K, Oue H, Kajihara S, Hayashi K, Akagawa Y (2012) Influence of formalin fixation on the implant stability quotient and mechanical characteristics of bone. Br J Oral Maxillofac Surg. doi:10.1016/j.bjoms.2012.08.009 PubMedGoogle Scholar
  33. 33.
    Burkhart KJ, Nowak TE, Blum J, Kuhn S, Welker M, Sternstein W, Mueller LP, Rommens PM (2010) Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed Tech (Berl) 55(6):361–365. doi:10.1515/BMT.2010.043 CrossRefGoogle Scholar
  34. 34.
    Liljenqvist U, Hackenberg L, Link T, Halm H (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67(2):157–163PubMedGoogle Scholar
  35. 35.
    Chen LH, Tai CL, Lee DM, Lai PL, Lee YC, Niu CC, Chen WJ (2011) Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling. BMC Musculoskelet Disord 12:33. doi:10.1186/1471-2474-12-33 PubMedCrossRefGoogle Scholar
  36. 36.
    Hashemi A, Bednar D, Ziada S (2009) Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J 9(5):404–410. doi:10.1016/j.spinee.2008.07.001 PubMedCrossRefGoogle Scholar
  37. 37.
    Chen LH, Tai CL, Lai PL, Lee DM, Tsai TT, Fu TS, Niu CC, Chen WJ (2009) Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon) 24(8):613–618. doi:10.1016/j.clinbiomech.2009.05.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • K. Wegmann
    • 1
  • S. Gick
    • 2
  • C. Heidemann
    • 1
  • D. Pennig
    • 2
  • W. F. Neiss
    • 3
  • L. P. Müller
    • 1
  • P. Eysel
    • 1
  • R. Sobottke
    • 4
  1. 1.Centre for Orthopaedic and Trauma SurgeryUniversity Medical CentreCologneGermany
  2. 2.Department for Orthopaedic and Trauma SurgerySt. Vinzenz HospitalCologneGermany
  3. 3.Department of Anatomy IUniversity of CologneCologneGermany
  4. 4.Centre for Orthopaedic and Trauma Surgery, Medizinisches Zentrum StädteRegion Aachen GmbHAachenGermany

Personalised recommendations