Skip to main content
Log in

Practice in rehabilitation after cartilage therapy: an expert survey

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Current cartilage therapy modalities like microfracture, ACT/MACT, AMIC or osteochondral transplantation are important tools to treat symptomatic (osteo)chondral lesions of the knee joint. However, until now there exists no high-level evidence based accepted rehabilitation plan for the postoperative treatment.

Hypothesis/purpose

This survey describes the predominantly used rehabilitation plan as implemented by expert musculoskeletal surgeons for operatively treated (osteo)chondral lesions.

Study design

Survey and systematic review.

Methods

An electronic questionnaire covering general and specific items concerning aftercare following cartilage therapy in the knee joint was designed and disposed to analyze rehabilitation programs among a population of expert musculoskeletal surgeons of the AGA (Society of arthroscopy and joint surgery). All instructors (304 in 01/2011) were included into the survey. A total of 246 (80.9 %) instructors answered the questionnaire.

Results

The predominant used therapy to treat cartilage lesions is microfracture and for osteochondral lesions the osteochondral transplantation. Physiotherapy starts directly after surgery and takes more than 6 weeks. Most surgeons do not immobilize patients after surgery and use partial weight-bearing for up to 5 weeks. The change from partial to full weight-bearing is done step-wise with a 20-kg/week increase. Free ROM is allowed by the majority of instructors (55 %) directly after surgery. A CPM-device is also used directly and up to 5 weeks. Swimming and biking are allowed after 6 weeks, running is allowed after 12 weeks and contact sports after 24 weeks. Most instructors do not use braces in the aftercare procedure, but nearly all (93 %) prescribe crutches. Typical drugs used during the aftercare are NSAID, Heparin and antibiotics. For most instructors (79 % respectively 75 %) knee stability and a straight leg axis are necessary for a successful cartilage therapy. If a concomitant therapy like ACL reconstruction or an osteotomy is performed, aftercare is mainly dependent on cartilage therapy (62 % respectively 59 % of instructors).

Conclusions

Today there exists no detailed rehabilitation program for treatment after a cartilage-related operation on the basis of an evidence-based level I study. The reason might be that many variables contribute to a specific aftercare procedure. Therefore, the survey of experienced surgeons may help to identify the most promising rehabilitation regime for today, at least until evidence-based level I studies are accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895. doi:10.1056/NEJM199410063311401

    Article  PubMed  CAS  Google Scholar 

  2. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246. doi:10.1177/0363546507311095

    Article  PubMed  Google Scholar 

  3. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res (391 suppl):S362–369

  4. Benthien JP, Behrens P (2011) The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 19(8):1316–1319. doi:10.1007/s00167-010-1356-1

    Article  Google Scholar 

  5. Braun S, Minzlaff P, Hollweck R, Wortler K, Imhoff AB (2008) The 5.5-year results of MegaOATS–autologous transfer of the posterior femoral condyle: a case-series study. Arthritis Res Ther 10(3):R68. doi:10.1186/ar2439

    Article  PubMed  Google Scholar 

  6. Hangody L, Dobos J, Balo E, Panics G, Hangody LR, Berkes I (2010) Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study. Am J Sports Med 38(6):1125–1133. doi:10.1177/0363546509360405

    Article  PubMed  Google Scholar 

  7. Braun S, Steadman JR, Rodkey WG, Briggs KK (2009) Microfracture and specific rehabilitation for treating osteoarthritis of the knee. Indications, surgical technique, and rehabilitation protocol. Z Rheumatol 68(10):811–818. doi:10.1007/s00393-009-0551-2

    Article  PubMed  CAS  Google Scholar 

  8. Hurst JM, Steadman JR, O’Brien L, Rodkey WG, Briggs KK (2010) Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med 29(2):257–265. doi:10.1016/j.csm.2009.12.009

    Article  PubMed  Google Scholar 

  9. Nho SJ, Pensak MJ, Seigerman DA, Cole BJ (2010) Rehabilitation after autologous chondrocyte implantation in athletes. Clin Sports Med 29(2):267–282. doi:10.1016/j.csm.2009.12.004

    Article  PubMed  Google Scholar 

  10. Reinold MM, Wilk KE, Macrina LC, Dugas JR, Cain EL (2006) Current concepts in the rehabilitation following articular cartilage repair procedures in the knee. J Orthop Sports Phys Ther 36(10):774–794

    PubMed  Google Scholar 

  11. Riegger-Krugh CL, McCarty EC, Robinson MS, Wegzyn DA (2008) Autologous chondrocyte implantation: current surgery and rehabilitation. Med Sci Sports Exerc 40(2):206–214. doi:10.1249/mss.0b013e31815cb228

    Article  PubMed  Google Scholar 

  12. Wilk KE, Briem K, Reinold MM, Devine KM, Dugas J, Andrews JR (2006) Rehabilitation of articular lesions in the athlete’s knee. J Orthop Sports Phys Ther 36(10):815–827

    PubMed  Google Scholar 

  13. Hirschmuller A, Baur H, Braun S, Kreuz PC, Sudkamp NP, Niemeyer P (2011) Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med 39(12):2686–2696. doi:10.1177/0363546511404204

    Article  PubMed  Google Scholar 

  14. Ebert JR, Robertson WB, Lloyd DG, Zheng MH, Wood DJ, Ackland T (2008) Traditional vs accelerated approaches to post-operative rehabilitation following matrix-induced autologous chondrocyte implantation (MACI): comparison of clinical, biomechanical and radiographic outcomes. Osteoarthritis Cartilage 16(10):1131–1140. doi:10.1016/j.joca.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  15. Wondrasch B, Zak L, Welsch GH, Marlovits S (2009) Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: a prospective, randomized controlled pilot study. Am J Sports Med 37(Suppl 1):88S–96S. doi:10.1177/0363546509351272

    Article  PubMed  Google Scholar 

  16. Fazalare JA, Griesser MJ, Siston RA, Flanigan DC (2010) The use of continuous passive motion following knee cartilage defect surgery: a systematic review. Orthopedics 33(12):878. doi:10.3928/01477447-20101021-16

    PubMed  Google Scholar 

  17. Salzmann GM, Niemeyer P, Steinwachs M, Kreuz PC, Sudkamp NP, Mayr HO (2011) Cartilage repair approach and treatment characteristics across the knee joint: a European survey. Arch Orthop Trauma Surg 131(3):283–291. doi:10.1007/s00402-010-1047-x

    Article  PubMed  Google Scholar 

  18. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A(3):455–464

    PubMed  Google Scholar 

  19. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484. doi:10.1053/jars.2003.50112

    Article  PubMed  Google Scholar 

  20. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, Marcacci M (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Med 39(12):2549–2557. doi:10.1177/0363546511420688

    Google Scholar 

  21. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP, Tig/Act, Group EXTS (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. The American journal of sports medicine 39(12):2566–2574. doi:10.1177/0363546511422220

    Article  PubMed  Google Scholar 

  22. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19S. doi:10.1177/0363546509350694

    Article  PubMed  Google Scholar 

  23. Steinhagen J, Bruns J, Deuretzbacher G, Ruether W, Fuerst M, Niggemeyer O (2010) Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes. Int Orthop 34(6):819–825. doi:10.1007/s00264-009-0841-y

    Article  PubMed  Google Scholar 

  24. Basad E, Sturz H, Steinmeyer J (2007) Treatment of osteochondral defects of the knee with autologous bone graft and chondrocyte transplantation: an overview together with our results. Acta Orthop Traumatol Turc 41(Suppl 2):79–86

    PubMed  Google Scholar 

  25. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G (2008) Autologous osteochondral grafting–technique and long-term results. Injury 39(Suppl 1):S32–S39. doi:10.1016/j.injury.2008.01.041

    Article  PubMed  Google Scholar 

  26. Ebert JR, Fallon M, Zheng MH, Wood DJ, Ackland TR (2012) A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 40(7):1527–1537. doi:10.1177/0363546512445167

    Article  PubMed  Google Scholar 

  27. Chang NJ, Lin CC, Li CF, Wang DA, Issariyaku N, Yeh ML (2012) The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33(11):3153–3163. doi:10.1016/j.biomaterials.2011.12.054

    Article  PubMed  CAS  Google Scholar 

  28. Ou YS, Tan C, An H, Jiang DM, Quan ZX, Tang K, Luo XJ (2012) The effects of NSAIDs on types I, II, and III collagen metabolism in a rat osteoarthritis model. Rheumatol Int 32(8):2401–2405. doi:10.1007/s00296-011-1978-8

    Article  PubMed  CAS  Google Scholar 

  29. Lakey RL, Cawston TE (2009) Sulfasalazine blocks the release of proteoglycan and collagen from cytokine stimulated cartilage and down-regulates metalloproteinases. Rheumatology (Oxford) 48(10):1208–1212. doi:10.1093/rheumatology/kep236

    Article  CAS  Google Scholar 

  30. Kuo YC, Tsai YT (2011) Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration. Colloids Surf B Biointerfaces 82(2):616–623. doi:10.1016/j.colsurfb.2010.10.031

    Article  PubMed  CAS  Google Scholar 

  31. Goto K, Yabe K, Suzuki T, Takasuna K, Jindo T, Manabe S (2008) Gene expression profiles in the articular cartilage of juvenile rats receiving the quinolone antibacterial agent ofloxacin. Toxicology 249(2–3):204–213. doi:10.1016/j.tox.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  32. Goto K, Yabe K, Suzuki T, Jindo T, Sanbuissho A (2010) Chondrotoxicity and toxicokinetics of novel quinolone antibacterial agents DC-159a and DX-619 in juvenile rats. Toxicology 276(2):122–127. doi:10.1016/j.tox.2010.07.017

    Article  PubMed  CAS  Google Scholar 

  33. Bauer S, Khan RJ, Ebert JR, Robertson WB, Breidahl W, Ackland TR, Wood DJ (2012) Knee joint preservation with combined neutralising high tibial osteotomy (HTO) and matrix-induced autologous chondrocyte implantation (MACI) in younger patients with medial knee osteoarthritis: a case series with prospective clinical and MRI follow-up over 5 years. Knee 19(4):431–439. doi:10.1016/j.knee.2011.06.005

    Article  PubMed  CAS  Google Scholar 

  34. Muller M, Strecker W (2008) Arthroscopy prior to osteotomy around the knee? Arch Orthop Trauma Surg 128(11):1217–1221. doi:10.1007/s00402-007-0398-4

    Article  PubMed  CAS  Google Scholar 

  35. El-Azab H, Glabgly P, Paul J, Imhoff AB, Hinterwimmer S (2010) Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med 38(2):323–329. doi:10.1177/0363546509348050

    Article  PubMed  Google Scholar 

  36. Hankemeier S, Mommsen P, Krettek C, Jagodzinski M, Brand J, Meyer C, Meller R (2010) Accuracy of high tibial osteotomy: comparison between open- and closed-wedge technique. Knee Surg Sports Traumatol Arthrosc 18(10):1328–1333. doi:10.1007/s00167-009-1020-9

    Article  PubMed  CAS  Google Scholar 

  37. Gaasbeek RD, Nicolaas L, Rijnberg WJ, van Loon CJ, van Kampen A (2010) Correction accuracy and collateral laxity in open versus closed wedge high tibial osteotomy. A one-year randomised controlled study. Int Orthop 34(2):201–207. doi:10.1007/s00264-009-0861-7

    Article  PubMed  Google Scholar 

  38. Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11(3):132–138. doi:10.1007/s00167-002-0334-7

    PubMed  Google Scholar 

  39. Hinterwimmer S, Beitzel K, Paul J, Kirchhoff C, Sauerschnig M, von Eisenhart-Rothe R, Imhoff AB (2011) Control of posterior tibial slope and patellar height in open-wedge valgus high tibial osteotomy. Am J Sports Med 39(4):851–856. doi:10.1177/0363546510388929

    Article  PubMed  Google Scholar 

  40. El-Azab H, Halawa A, Anetzberger H, Imhoff AB, Hinterwimmer S (2008) The effect of closed- and open-wedge high tibial osteotomy on tibial slope: a retrospective radiological review of 120 cases. J Bone Joint Surg Br 90(9):1193–1197. doi:10.1302/0301-620X.90B9.20688

    Article  PubMed  CAS  Google Scholar 

  41. Staubli AE, De Simoni C, Babst R, Lobenhoffer P (2003) TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia–early results in 92 cases. Injury 34(Suppl 2):B55–B62

    Article  PubMed  Google Scholar 

  42. Kessler MA, Behrend H, Henz S, Stutz G, Rukavina A, Kuster MS (2008) Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 16(5):442–448. doi:10.1007/s00167-008-0498-x

    Article  PubMed  CAS  Google Scholar 

  43. Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH (2006) Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am 88(Suppl 4):2–10. doi:10.2106/JBJS.F.00616

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the AGA for making possible this survey, and all AGA instructors for their participation. In particular we thank Mrs. Eva Maria Pinz for her outstanding help in data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Vogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, S., Angele, P., Arnold, M. et al. Practice in rehabilitation after cartilage therapy: an expert survey. Arch Orthop Trauma Surg 133, 311–320 (2013). https://doi.org/10.1007/s00402-012-1662-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1662-9

Keywords

Navigation