Archives of Orthopaedic and Trauma Surgery

, Volume 132, Issue 10, pp 1495–1503 | Cite as

Musculoskeletal function and quality of life after an unstable trochanteric fracture treated with the trochanteric gamma nail

  • Ricard Miedel
  • Hans Törnkvist
  • Sari Ponzer
  • Jan Tidermark
Osteoporotic Fracture Management



The aim of the study was to report the musculoskeletal function and health-related quality of life (HRQoL) after an unstable trochanteric fracture treated with a cephalomedullary nail.


One hundred and seventeen patients, mean age 84.1 years, were included in a 1-year prospective cohort study. Outcome measurements included musculoskeletal function according to the Short Musculoskeletal Function Assessment (SMFA) and HRQoL according to the EQ-5D.


Fourteen patients (12.0 %) were reoperated on, all but one being due to a secondary lag-screw penetration/cut-out. The need for revision surgery was significantly higher after a 4-part fracture according to the Jensen–Michaelsen classification as compared to after a 3-part fracture, i.e. 17 versus 6 % (p = 0.048). The reoperation was a hip replacement in 12 of the 14 patients, a total hip replacement (THR) in 10 and a hemiarthroplasty in 2. The SMFA dysfunction and bother indices in all patients showed a significant deterioration at 12 months compared to before the fracture, from 24.8 to 42.4 (p < 0.001) and 14.3 to 33.7 (p < 0.001), respectively. The EQ-5Dindex score decreased from 0.79 prefracture to 0.51 (p < 0.001). The final outcome for the patients who underwent reoperation with THR was surprisingly good with an SMFA dysfunction index of 43.4, a bother index of 36.6 and an EQ-5Dindex score of 0.58.


An unstable trochanteric fracture treated with a cephalomedullary nail had a substantial negative impact on the patient’s musculoskeletal function and HRQoL. The need for revision surgery was significantly higher after a 4-part fracture compared to after a 3-part fracture. The by far most common fracture complication, i.e. a secondary lag-screw penetration/cut-out, was successfully treated with a THR.


Trochanteric fractures Elderly Fracture fixation Intramedullary Treatment outcome Quality of life 


  1. 1.
    Rogmark C, Sernbo I, Johnell O, Nilsson JA (1999) Incidence of hip fractures in Malmö, Sweden, 1992–1995. A trend-break. Acta Orthop Scand 70(1):19–22PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng SY, Levy AR, Lefaivre KA, Guy P, Kuramoto L, Sobolev B (2011) Geographic trends in incidence of hip fractures: a comprehensive literature review. Osteoporos Int 22(10):2575–2586PubMedCrossRefGoogle Scholar
  3. 3.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17(7):1237–1244PubMedCrossRefGoogle Scholar
  4. 4.
    Kannus P, Parkkari J, Sievanen H, Heinonen A, Vuori I, Jarvinen M (1996) Epidemiology of hip fractures. Bone 18(1 Suppl):57S–63SPubMedCrossRefGoogle Scholar
  5. 5.
    Löfman O, Berglund K, Larsson L, Toss G (2002) Changes in hip fracture epidemiology: redistribution between ages, genders and fracture types. Osteoporos Int 13(1):18–25PubMedCrossRefGoogle Scholar
  6. 6.
    Karagas MR, Lu-Yao GL, Barrett JA, Beach ML, Baron JA (1996) Heterogeneity of hip fracture: age, race, sex, and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol 143(7):677–682PubMedCrossRefGoogle Scholar
  7. 7.
    Jensen JS, Michaelsen M (1975) Trochanteric femoral fractures treated with McLaughlin osteosynthesis. Acta Orthop Scand 46(5):795–803PubMedCrossRefGoogle Scholar
  8. 8.
    Jensen JS, Tondevold E, Sonne-Holm S (1980) Stable trochanteric fractures. A comparative analysis of four methods of internal fixation. Acta Orthop Scand 51(5):811–816PubMedGoogle Scholar
  9. 9.
    The Swedish National Hip Fracture Registry (2009)
  10. 10.
    Mazzocca ADCA, Browner BD, Mast JW, Mendes MW (2003) Principles of internal fixation. In: Browner BD, Jupiter JB, Levine AM, Trafton PG (eds) Skeletal trauma: basic science, management and reconstruction, 3rd edn. Saunders, PhiladelphiaGoogle Scholar
  11. 11.
    Swiontkowski MF, Engelberg R, Martin DP, Agel J (1999) Short Musculoskeletal Function Assessment Questionnaire: validity, reliability, and responsiveness. J Bone Jt Surg Am 81(9):1245–1260Google Scholar
  12. 12.
    Ponzer S, Skoog A, Bergström G (2003) The Short Musculoskeletal Function Assessment Questionnaire (SMFA): cross-cultural adaptation, validity, reliability and responsiveness of the Swedish SMFA (SMFA-Swe). Acta Orthop Scand 74(6):756–763PubMedCrossRefGoogle Scholar
  13. 13.
    Brooks R (1996) EuroQol: the current state of play. Health Policy 37:53–72PubMedCrossRefGoogle Scholar
  14. 14.
    Brazier JE, Walters SJ, Nicholl JP, Kohler B (1996) Using the SF-36 and Euroqol on an elderly population. Qual Life Res 5(2):195–204PubMedCrossRefGoogle Scholar
  15. 15.
    Coast J, Peters TJ, Richards SH, Gunnell DJ (1998) Use of the EuroQoL among elderly acute care patients. Qual Life Res 7(1):1–10PubMedCrossRefGoogle Scholar
  16. 16.
    Tidermark J, Bergström G (2007) Responsiveness of the EuroQol (EQ-5D) and the Nottingham Health Profile (NHP) in elderly patients with femoral neck fractures. Qual Life Res 16(2):321–330PubMedCrossRefGoogle Scholar
  17. 17.
    Miedel R, Ponzer S, Törnkvist H, Söderqvist A, Tidermark J (2005) The standard Gamma nail or the Medoff sliding plate for unstable trochanteric and subtrochanteric fractures. A randomised, controlled trial. J Bone Jt Surg Br 87(1):68–75Google Scholar
  18. 18.
    Kyle RF, Gustilo RB, Premer RF (1979) Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Jt Surg Am 61(2):216–221Google Scholar
  19. 19.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Jt Surg Am 77(7):1058–1064Google Scholar
  20. 20.
    Madsen JE, Naess L, Aune AK, Alho A, Ekeland A, Stromsoe K (1998) Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: a comparative study with the Gamma nail and compression hip screw. J Orthop Trauma 12(4):241–248PubMedCrossRefGoogle Scholar
  21. 21.
    Pfeiffer E (1975) A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc 23(10):433–441PubMedGoogle Scholar
  22. 22.
    Owens WD, Felts JA, Spitznagel EL Jr (1978) ASA physical status classifications: a study of consistency of ratings. Anesthesiology 49(4):239–243PubMedCrossRefGoogle Scholar
  23. 23.
    Katz S, Ford A, Moskowitz R, Jackson B, Jaffe M (1963) Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychological function. JAMA 185:94–99CrossRefGoogle Scholar
  24. 24.
    Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Jt Surg Br 54(1):61–76Google Scholar
  25. 25.
    Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev (9):CD000093Google Scholar
  26. 26.
    Radford PJ, Needoff M, Webb JK (1993) A prospective randomised comparison of the dynamic hip screw and the gamma locking nail. J Bone Jt Surg Br 75(5):789–793Google Scholar
  27. 27.
    Miedel R, Törnkvist H, Ponzer S, Söderqvist A, Tidermark J (2011) Musculoskeletal function and quality of life in elderly patients after a subtrochanteric femoral fracture treated with a cephalomedullary nail. J Orthop Trauma 25(4):208–213PubMedCrossRefGoogle Scholar
  28. 28.
    Ekström W, Nemeth G, Samnegård E, Dalen N, Tidermark J (2009) Quality of life after a subtrochanteric fracture: a prospective cohort study on 87 elderly patients. Injury 40(4):371–376PubMedCrossRefGoogle Scholar
  29. 29.
    Ekström W, Miedel R, Ponzer S, Hedström M, Samnegard E, Tidermark J (2009) Quality of life after a stable trochanteric fracture—a prospective cohort study on 148 patients. J Orthop Trauma 23(1):39–44PubMedCrossRefGoogle Scholar
  30. 30.
    Loch DA, Kyle RF, Bechtold JE, Kane M, Anderson K, Sherman RE (1998) Forces required to initiate sliding in second-generation intramedullary nails. J Bone Jt Surg Am 80(11):1626–1631Google Scholar
  31. 31.
    Utrilla AL, Reig JS, Munoz FM, Tufanisco CB (2005) Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 19(4):229–233PubMedCrossRefGoogle Scholar
  32. 32.
    Ovesen O, Andersen M, Poulsen T, Nymark T, Overgaard S, Rock ND (2006) The trochanteric gamma nail versus the dynamic hip screw: a prospective randomised study. One-year follow-up of 146 intertrochanteric fractures. Hip Int 16(4):293–298PubMedGoogle Scholar
  33. 33.
    Saarenpää I, Heikkinen T, Ristiniemi J, Hyvonen P, Leppilahti J, Jalovaara P (2009) Functional comparison of the dynamic hip screw and the Gamma locking nail in trochanteric hip fractures: a matched-pair study of 268 patients. Int Orthop 33(1):255–260PubMedCrossRefGoogle Scholar
  34. 34.
    Ekström W, Karlsson-Thur C, Larsson S, Ragnarsson B, Alberts KA (2007) Functional outcome in treatment of unstable trochanteric and subtrochanteric fractures with the proximal femoral nail and the Medoff sliding plate. J Orthop Trauma 21(1):18–25PubMedCrossRefGoogle Scholar
  35. 35.
    Papasimos S, Koutsojannis CM, Panagopoulos A, Megas P, Lambiris E (2005) A randomised comparison of AMBI, TGN and PFN for treatment of unstable trochanteric fractures. Arch Orthop Trauma Surg 125(7):462–468PubMedCrossRefGoogle Scholar
  36. 36.
    Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ (2010) A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Jt Surg Am 92(4):792–798CrossRefGoogle Scholar
  37. 37.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, Prokuski L, Sirkin MS, Ziran B, Henley B, Audige L (2007) Fracture and dislocation classification compendium—2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 21(10 Suppl):S1–S133PubMedCrossRefGoogle Scholar
  38. 38.
    Lunsjö K, Ceder L, Thorngren KG, Skytting B, Tidermark J, Berntson PO, Allvin I, Norberg S, Hjalmars K, Larsson S, Knebel R, Hauggaard A, Stigsson L (2001) Extramedullary fixation of 569 unstable intertrochanteric fractures: a randomized multicenter trial of the Medoff sliding plate versus three other screw-plate systems. Acta Orthop Scand 72(2):133–140PubMedCrossRefGoogle Scholar
  39. 39.
    Olsson O, Ceder L, Lunsjö K, Hauggaard A (1997) Biaxial dynamization in unstable intertrochanteric fractures. Good experience with a simplified Medoff sliding plate in 94 patients. Acta Orthop Scand 68(4):327–331PubMedCrossRefGoogle Scholar
  40. 40.
    Parker MJ (1996) Trochanteric hip fractures. Fixation failure commoner with femoral medialization, a comparison of 101 cases. Acta Orthop Scand 67(4):329–332PubMedCrossRefGoogle Scholar
  41. 41.
    Blomfeldt R, Törnkvist H, Eriksson K, Söderqvist A, Ponzer S, Tidermark J (2007) A randomised controlled trial comparing bipolar hemiarthroplasty with total hip replacement for displaced intracapsular fractures of the femoral neck in elderly patients. J Bone Jt Surg Br 89(2):160–165CrossRefGoogle Scholar
  42. 42.
    Bhandari M, Schemitsch E, Jonsson A, Zlowodzki M, Haidukewych GJ (2009) Gamma nails revisited: gamma nails versus compression hip screws in the management of intertrochanteric fractures of the hip: a meta-analysis. J Orthop Trauma 23(6):460–464PubMedCrossRefGoogle Scholar
  43. 43.
    Parker MJ, Handoll HH (2004) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures. Cochrane Database Syst Rev (1):CD000093Google Scholar
  44. 44.
    Barei DP, Agel J, Swiontkowski MF (2007) Current utilization, interpretation, and recommendations: the musculoskeletal function assessments (MFA/SMFA). J Orthop Trauma 21(10):738–742PubMedCrossRefGoogle Scholar
  45. 45.
    Lomita C (2002) A comparison of control populations in Qubec using the Short Musculoskeletal Function Assessment. McGill J Med 6:94–99Google Scholar
  46. 46.
    Burström K, Johannesson M, Diderichsen F (2001) Swedish population health-related quality of life results using the EQ-5D. Qual Life Res 10(7):621–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ricard Miedel
    • 1
    • 3
  • Hans Törnkvist
    • 1
  • Sari Ponzer
    • 1
  • Jan Tidermark
    • 1
    • 2
  1. 1.Section of Orthopaedics, Department of Clinical Science and Education, Karolinska InstitutetStockholm Söder HospitalStockholmSweden
  2. 2.Department of OrthopaedicsCapio S:t Görans HospitalStockholmSweden
  3. 3.Department of OrthopaedicsStockholm Söder HospitalStockholmSweden

Personalised recommendations