Skip to main content

Advertisement

Log in

Angulated locking plate in periprosthetic proximal femur fractures: biomechanical testing of a new prototype plate

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

To improve proximal plate fixation of periprosthetic femur fractures, a prototype locking plate with proximal posterior angulated screw positioning was developed and biomechanically tested.

Methods

Twelve fresh frozen, bone mineral density matched human femora, instrumented with cemented hip endoprosthesis were osteotomized simulating a Vancouver B1 fracture. Specimens were fixed proximally with monocortical (LCP) or angulated bicortical (A-LCP) head-locking screws. Biomechanical testing comprised quasi-static axial bending and torsion and cyclic axial loading until catastrophic failure with motion tracking.

Results

Axial bending and torsional stiffness of the A-LCP construct were (1,633 N/mm ± 548 standard deviation (SD); 0.75 Nm/deg ± 0.23 SD) at the beginning and (1,368 N/mm ± 650 SD; 0.67 Nm/deg ± 0.25 SD) after 10,000 cycles compared to the LCP construct (1,402 N/mm ± 272 SD; 0.54 Nm/deg ± 0.19 SD) at the beginning and (1,029 N/mm ± 387 SD; 0.45 Nm/deg ± 0.15) after 10,000 cycles. Relative movements for medial bending and axial translation differed significantly between the constructs after 5,000 cycles (A-LCP 2.09° ± 0.57 SD; LCP 5.02° ± 4.04 SD; p = 0.02; A-LCP 1.25 mm ± 0.33 SD; LCP 2.81 mm ± 2.32 SD; p = 0.02) and after 15,000 cycles (A-LCP 2.96° ± 0.70; LCP 6.52° ± 2.31; p = 0.01; A-LCP 1.68 mm ± 0.32; LCP 3.14 mm ± 0.68; p = 0.01). Cycles to failure (criterion 2 mm axial translation) differed significantly between A-LCP (15,500 ± 2,828 SD) and LCP construct (5,417 ± 7,236 SD), p = 0.03.

Conclusion

Bicortical angulated screw positioning showed less interfragmentary osteotomy movement and improves osteosynthesis in periprosthetic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsiridis E, Haddad FS, Gie GA (2003) The management of periprosthetic femoral fractures around hip replacements. Injury 34:95–105

    Article  PubMed  Google Scholar 

  2. Parvizi J, Rapuri VR, Purtill JJ, Sharkey PF, Rothman RH, Hozack WJ (2004) Treatment protocol for proximal femoral periprosthetic fractures. J Bone Joint Surg Am 86-A(Suppl 2):8–16

    PubMed  Google Scholar 

  3. Duncan CP, Masri BA (1995) Fractures of the femur after hip replacement. Instr Course Lect 44:293–304

    PubMed  CAS  Google Scholar 

  4. Ogden W, Rendall J (1978) Fractures beneath hip prostheses: a special indication for Parham bands and plating. Orthop Trans 2:70

    Google Scholar 

  5. Wilson D, Masri BA, Duncan CP (2001) Periprosthetic fractures: an operative algorithm. Orthopedics 24:869–870

    PubMed  CAS  Google Scholar 

  6. Zenni EJ Jr, Pomeroy DL, Caudle RJ (1988) Ogden plate and other fixations for fractures complicating femoral endoprostheses. Clin Orthop Relat Res 231:83–90

    Google Scholar 

  7. Kamineni S, Ware HE (1999) The Mennen plate: unsuitable for elderly femoral peri-prosthetic fractures. Injury 30:257–260

    Article  PubMed  CAS  Google Scholar 

  8. Zdero R, Walker R, Waddell JP, Schemitsch EH (2008) Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Jt Surg Am 90:1068–1077

    Article  Google Scholar 

  9. Virolainen P, Mokka J, Seppanen M, Makela K (2010) Up to 10 years follow up of the use of 71 cortical allografts (strut-grafts) for the treatment of periprosthetic fractures. Scand J Surg 99:240–243

    PubMed  CAS  Google Scholar 

  10. Dennis MG, Simon JA, Kummer FJ, Koval KJ, DiCesare PE (2000) Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques. J Arthroplast 15:523–528

    Article  CAS  Google Scholar 

  11. Fulkerson E, Koval K, Preston CF, Iesaka K, Kummer FJ, Egol KA (2006) Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable plates. J Orthop Trauma 20:89–93

    Article  PubMed  Google Scholar 

  12. Lever JP, Zdero R, Nousiainen MT, Waddell JP, Schemitsch EH (2010) The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty. J Orthop Surg Res 5:45

    Article  PubMed  Google Scholar 

  13. Schmotzer H, Tchejeyan GH, Dall DM (1996) Surgical management of intra- and postoperative fractures of the femur about the tip of the stem in total hip arthroplasty. J Arthroplast 11:709–717

    Article  CAS  Google Scholar 

  14. Dennis MG, Simon JA, Kummer FJ, Koval KJ, Di Cesare PE (2001) Fixation of periprosthetic femoral shaft fractures: a biomechanical comparison of two techniques. J Orthop Trauma 15:177–180

    Article  PubMed  CAS  Google Scholar 

  15. Windolf M, Muths R, Braunstein V, Gueorguiev B, Hänni M, Schwieger K (2009) Quantification of cancellous bone-compaction due to DHS Blade insertion and influence upon cut-out resistance. Clin Biomech (Bristol, Avon) 24:53–58

    Article  Google Scholar 

  16. Duda GN, Schneider E, Chao EY (1997) Internal forces and moments in the femur during walking. J Biomech 30:933–941

    Article  PubMed  CAS  Google Scholar 

  17. Gueorguiev B, Wahnert D, Albrecht D, Ockert B, Windolf M, Schwieger K (2011) Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study. J Trauma 70:358–365

    Article  PubMed  Google Scholar 

  18. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmüller A, Südkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41:1256–1261

    Article  PubMed  CAS  Google Scholar 

  19. Moazen M, Jones AC, Jin Z, Wilcox RK, Tsiridis E (2011) Periprosthetic fracture fixation of the femur following total hip arthroplasty: a review of biomechanical testing. Clin Biomech (Bristol, Avon) 26:13–22

    Article  Google Scholar 

  20. Bergmann G, Rohlmann A, Graichen F (1989) In vivo measurement of hip joint stress. 1. Physical therapy. Z Orthop Ihre Grenzgeb 127:672–679

    Article  PubMed  CAS  Google Scholar 

  21. Wirtz DC, Heller KD, Niethard FU (1998) Biomechanical aspects of load-bearing capacity after total endoprosthesis replacement of the hip joint. An evaluation of current knowledge and review of the literature. Z Orthop Ihre Grenzgeb 136:310–316

    Article  PubMed  CAS  Google Scholar 

  22. Bergmann G, Graichen F, Rohlmann A (2004) Hip joint contact forces during stumbling. Langenbecks Arch Surg 389:53–59

    Article  PubMed  CAS  Google Scholar 

  23. Hua J, Walker PS (1994) Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs. J Bone Jt Surg Am 76:95–103

    CAS  Google Scholar 

  24. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  PubMed  CAS  Google Scholar 

  25. Wilson D, Frei H, Masri BA, Oxland TR, Duncan CP (2005) A biomechanical study comparing cortical onlay allograft struts and plates in the treatment of periprosthetic femoral fractures. Clin Biomech (Bristol, Avon) 20:70–76

    Article  Google Scholar 

  26. Talbot M, Zdero R, Schemitsch EH (2008) Cyclic loading of periprosthetic fracture fixation constructs. J Trauma 64:1308–1312

    Article  PubMed  Google Scholar 

  27. Kobbe P, Klemm R, Reilmann H, Hockertz TJ (2008) Less invasive stabilisation system (LISS) for the treatment of periprosthetic femoral fractures: a 3-year follow-up. Injury 39:472–479

    Article  PubMed  Google Scholar 

  28. Kääb MJ, Stöckle U, Schütz M, Stefansky J, Perka C, Haas NP (2006) Stabilisation of periprosthetic fractures with angular stable internal fixation: a report of 13 cases. Arch Orthop Trauma Surg 126:105–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, M., Gueorguiev, B., Joseph, S. et al. Angulated locking plate in periprosthetic proximal femur fractures: biomechanical testing of a new prototype plate. Arch Orthop Trauma Surg 132, 1437–1444 (2012). https://doi.org/10.1007/s00402-012-1556-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1556-x

Keywords

Navigation