Skip to main content

Advertisement

Log in

Internal fixation of dorsally comminuted fractures of the distal part of the radius: a biomechanical analysis of volar plate and intramedullary nail fracture stability

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The purpose of the present study was to carry out biomechanical testing of “new generation” volar plates and an intramedullary nail.

Methods

Four volar locking plates (Column Plate, VariAx distal radius, 2.4 mm-LCP and 3.5 mm-LCP) and the intramedullary nail, Targon-DR, were implanted in biomechanically validated artificial bones after simulation of a wedge osteotomy with total transection of the volar cortex to mimic a type 23 A3-fracture according to the AO-classification. Axial load (250 Newton [N]) and volar and dorsal bending loads (both 50 N) were applied. Axial load was increased to fixation failure. Gap motion was measured three-dimensionally directly at the fracture gap. The 3.5 mm-LCP was used for comparison as it currently represents an established locking implant that has been well tested biomechanically.

Results

In this experimental setting, the 2.4 mm-LCP showed the lowest resistance under all three loading modi and, consequently, the highest level of motion at the osteotomy gap in comparison to all other implants (p < 0.05). Under axial loading, there were no significant differences between the other four implants. Under dorsal bending, the Targon-DR-nail and the VariAx-plate showed less gap displacement in comparison to the 3.5 mm-LCP (p < 0.05). Under volar bending, only the Targon-nail showed greater resistance than the 3.5 mm-LCP (p < 0.05) with no other significant differences between the Column Plate, the VariAx and the 3.5 mm-LCP.

Conclusion

In this experimental setting, all “new generation” implants for distal radius fractures with the exception of the 2.4 mm-LCP showed identical or higher stability compared to the 3.5 mm-LCP. The 2.4 mm-LCP showed the lowest resistance and this must be taken into consideration when planning postoperative functional therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rozental TD, Beredjiklian PK, Bozentka DJ (2003) Functional outcome and complications following two types of dorsal plating for unstable fractures of the distal part of the radius. J Bone Joint Surg Am 85-A(10):1956–1960

    PubMed  Google Scholar 

  2. Konstantinidis L, Helwig P, Strohm PC, Hirschmuller A, Kron P, Sudkamp NP (2010) Clinical and radiological outcomes after stabilisation of complex intra-articular fractures of the distal radius with the volar 2.4 mm LCP. Arch Orthop Trauma Surg 130(6):751–757

    Article  PubMed  Google Scholar 

  3. Willis AA, Kutsumi K, Zobitz ME, Cooney WP 3rd (2006) Internal fixation of dorsally displaced fractures of the distal part of the radius. A biomechanical analysis of volar plate fracture stability. J Bone Joint Surg Am 88(11):2411–2417

    Article  PubMed  Google Scholar 

  4. Rudig L, Mehling I, Klitscher D, Mehler D, Prommersberger KJ, Rommens PM, Muller LP (2009) Biomechanical study of four palmar locking plates and one non-locking palmar plate for distal radius fractures: stiffness and load to failure tests in a cadaver model. Biomed Tech (Berl) 54(3):150–158

    Article  Google Scholar 

  5. Strohm PC, Muller CA, Helwig P, Mohr B, Sudkamp NP (2007) Is the locking, 3.5 mm Palmar T-Plate the implant of choice for displaced distal radius fractures? Z Orthop Unfall 145(3):331–337

    Article  PubMed  CAS  Google Scholar 

  6. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmuller A, Sudkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41(12):1256–1261

    Article  PubMed  CAS  Google Scholar 

  7. Jupiter JB, Marent-Huber M (2009) Operative management of distal radial fractures with 2.4-millimeter locking plates. A multicenter prospective case series. J Bone Joint Surg Am 91(1):55–65

    Article  PubMed  Google Scholar 

  8. Arora R, Lutz M, Fritz D, Zimmermann R, Oberladstatter J, Gabl M (2005) Palmar locking plate for treatment of unstable dorsal dislocated distal radius fractures. Arch Orthop Trauma Surg 125(6):399–404

    Article  PubMed  CAS  Google Scholar 

  9. Arora R, Lutz M, Hennerbichler A, Krappinger D, Espen D, Gabl M (2007) Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate. J Orthop Trauma 21(5):316–322

    Article  PubMed  Google Scholar 

  10. Ilyas AM, Thoder JJ (2008) Intramedullary fixation of displaced distal radius fractures: a preliminary report. J Hand Surg [Am] 33(10):1706–1715

    Article  Google Scholar 

  11. Orbay JL, Touhami A, Orbay C (2005) Fixed angle fixation of distal radius fractures through a minimally invasive approach. Tech Hand Up Extrem Surg 9(3):142–148

    Article  PubMed  Google Scholar 

  12. Brooks KR, Capo JT, Warburton M, Tan V (2006) Internal fixation of distal radius fractures with novel intramedullary implants. Clin Orthop Relat Res 445:42–50

    PubMed  Google Scholar 

  13. Bennett GL, Leeson MC, Smith BS (1989) Intramedullary fixation of unstable distal radius fractures. A method of fixation allowing early motion. Orthop Rev 18(2):210–216

    PubMed  CAS  Google Scholar 

  14. Roderer G, Moll S, Gebhard F, Claes L, Krischak G (2011) Side plate fixation vs. intramedullary nailing in an unstable medial femoral neck fracture model: a comparative biomechanical study. Clin Biomech (Bristol, Avon) 26(2):141–146

    Article  CAS  Google Scholar 

  15. Putnam MD, Meyer NJ, Nelson EW, Gesensway D, Lewis JL (2000) Distal radial metaphyseal forces in an extrinsic grip model: implications for postfracture rehabilitation. J Hand Surg Am 25(3):469–475

    Article  PubMed  CAS  Google Scholar 

  16. Chao EYS, An K-N, Cooney WP, Linscheid RL (1989) Biomechanics of the hand. World Scientific, Singapore

    Book  Google Scholar 

  17. Figl M, Weninger P, Liska M, Hofbauer M, Leixnering M (2009) Volar fixed-angle plate osteosynthesis of unstable distal radius fractures: 12 months results. Arch Orthop Trauma Surg 129(5):661–669

    Article  PubMed  Google Scholar 

  18. Muller LP, Klitscher D, Rudig L, Mehler D, Rommens PM, Prommersberger KJ (2006) Locking plates for corrective osteotomy of malunited dorsally tilted distal radial fractures: a biomechanical study. J Hand Surg Br 31(5):556–561

    Article  PubMed  CAS  Google Scholar 

  19. Klitscher D, Mehling I, Nowak L, Nowak T, Rommens PM, Muller LP (2010) Biomechanical comparison of dorsal nail plate versus screw and K-wire construct for extra-articular distal radius fractures in a cadaver bone model. J Hand Surg Am 35(4):611–618

    Article  PubMed  Google Scholar 

  20. Klos K, Rausch S, Loffler M, Frober R, Hofmeier K, Lenz M, Hofmann GO, Muckley T (2010) A biomechanical comparison of a biodegradable volar locked plate with two titanium volar locked plates in a distal radius fracture model. J Trauma 68(4):984–991

    PubMed  CAS  Google Scholar 

  21. Weninger P, Schueller M, Drobetz H, Jamek M, Redl H, Tschegg E (2009) Influence of an additional locking screw on fracture reduction after volar fixed-angle plating-introduction of the “protection screw” in an extra-articular distal radius fracture model. J Trauma 67(4):746–751

    Article  PubMed  Google Scholar 

  22. Taylor KF, Parks BG, Segalman KA (2006) Biomechanical stability of a fixed-angle volar plate versus fragment-specific fixation system: cyclic testing in a C2-type distal radius cadaver fracture model. J Hand Surg [Am] 31(3):373–381

    Article  Google Scholar 

  23. Burkhart KJ, Nowak TE, Gradl G, Klitscher D, Mehling I, Mehler D, Mueller LP, Rommens PM (2010) Intramedullary nailing vs. palmar locked plating for unstable dorsally comminuted distal radius fractures: a biomechanical study. Clin Biomech (Bristol, Avon) 25(8):771–775

    Article  Google Scholar 

  24. Mehling I, Muller LP, Delinsky K, Mehler D, Burkhart KJ, Rommens PM (2010) Number and locations of screw fixation for volar fixed-angle plating of distal radius fractures: biomechanical study. J Hand Surg Am 35(6):885–891

    Article  PubMed  Google Scholar 

  25. Hoffmeier KL, Hofmann GO, Muckley T (2009) The strength of polyaxial locking interfaces of distal radius plates. Clin Biomech (Bristol, Avon) 24(8):637–641

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Konstantinidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinidis, L., Helwig, P., Seifert, J. et al. Internal fixation of dorsally comminuted fractures of the distal part of the radius: a biomechanical analysis of volar plate and intramedullary nail fracture stability. Arch Orthop Trauma Surg 131, 1529–1537 (2011). https://doi.org/10.1007/s00402-011-1346-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1346-x

Keywords

Navigation