Skip to main content

Advertisement

Log in

Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

The treatment of contaminated and infected bone defects remains an intractable problem and the ideal approach is to control infection and repair the bone defect at the same time. Thus, developing an osteoconductive bone graft composite with antibiotic and growth factor release capabilities as well as osteogenesis-matched degradation properties is necessary. A new calcium sulphate composite consisting of vancomycin and rhBMP-2 was developed, and the present study assessed its efficiency in vitro and in a rabbit tibial defect model.

Methods

Firstly, we detected the bioactivity of rhBMP-2 released from the composites by ALP assay in vitro. Then, the released vancomycin in bone tissue within 1 cm from implanted site was detected by HLPC at 1, 3, 5, 7, 14, 21 and 28 days after implantation. The rhBMP-2 concentration of tissues around the defects was also detected by ELISA. Histomorphometry and histomorphometrical analysis at 5, 14 and 28 days post-implantation was done for assessing its osteoinductivity for bone defects.

Results

The results showed rhBMP-2 was still active in vitro at 29 days. In vivo, the composite released an initial bolus of vancomycin and rhBMP-2 to the bone followed by gradual release for more than 14 and 21 days, respectively. The histomorphometry indicated that the composite significantly augmented new bone formation in the defect compared to the control.

Conclusions

This composite may be a potential therapeutic agent for contaminated or infected bone defects due to its concomitant osteoinductive and antibiotic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nelson CL, McLaren SG, Skinner RA, Smeltzer MS, Thomas JR, Olsen KM (2002) The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. J Orthop Res 20(4):643–647. doi:10.1016/S0736-0266(01)00133-4

    Article  PubMed  CAS  Google Scholar 

  2. Kawanabe K, Okada Y, Matsusue Y, Iida H, Nakamura T (1998) Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic. J Bone Joint Surg Br 80(3):527–530

    Article  PubMed  CAS  Google Scholar 

  3. Solberg BD, Gutow AP, Baumgaertner MR (1999) Efficacy of gentamycin-impregnated resorbable hydroxyapatite cement in treating osteomyelitis in a rat model. J Orthop Trauma 13(2):102–106

    Article  PubMed  CAS  Google Scholar 

  4. Korkusuz F, Korkusuz P, Eksioglu F, Gursel I, Hasirci V (2001) In vivo response to biodegradable controlled antibiotic release systems. J Biomed Mater Res 55(2):217–228. doi:10.1002/1097-4636(200105)55:2<217

    Article  PubMed  CAS  Google Scholar 

  5. Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K (1992) Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Joint Surg Br 74(4):600–604

    PubMed  CAS  Google Scholar 

  6. Cornell CN, Tyndall D, Waller S, Lane JM, Brause BD (1993) Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute. J Orthop Res 11(5):619–626. doi:10.1002/jor.1100110502

    Article  PubMed  CAS  Google Scholar 

  7. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8

    PubMed  Google Scholar 

  8. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–S27. doi:10.1016/j.injury.2005.07.029

    Article  PubMed  Google Scholar 

  9. Mackey D, Varlet A, Debeaumont D (1982) Antibiotic loaded plaster of paris pellets: an in vitro study of a possible method of local antibiotic therapy in bone infection. Clin Orthop Relat Res 167:263–268

    PubMed  Google Scholar 

  10. Dacquet V, Varlet A, Tandogan RN, Tahon MM, Fournier L, Jehl F, Monteil H, Bascoulergue G (1992) Antibiotic-impregnated plaster of paris beads. Trials with teicoplanin. Clin Orthop Relat Res 282:241–249

    PubMed  Google Scholar 

  11. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB (2001) Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am A 83(Suppl 2 (Pt 1)):8–18

    Google Scholar 

  12. McKee MD, Wild LM, Schemitsch EH, Waddell JP (2002) The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma 16(9):622–627

    Article  PubMed  Google Scholar 

  13. Kanellakopoulou K, Galanopoulos I, Soranoglou V, Tsaganos T, Tziortzioti V, Maris I, Papalois A, Giamarellou H, Giamarellos-Bourboulis EJ (2009) Treatment of experimental osteomyelitis caused by methicillin-resistant staphylococcus aureus with a synthetic carrier of calcium sulphate (stimulan) releasing moxifloxacin. Int J Antimicrob Agents 33(4):354–359. doi:10.1016/j.ijantimicag.2008.09.008

    Article  PubMed  CAS  Google Scholar 

  14. Sanicola SM, Albert SF (2005) The in vitro elution characteristics of vancomycin and tobramycin from calcium sulfate beads. J Foot Ankle Surg 44(2):121–124. doi:10.1053/j.jfas.2005.01.006

    Article  PubMed  Google Scholar 

  15. Hadjipavlou AG, Simmons JW, Yang J, Nicodemus CL, Esch O, Simmons DJ (2000) Plaster of paris as an osteoconductive material for interbody vertebral fusion in mature sheep. Spine (Phila Pa 1976) 25(1):10–15 (discussion 16)

    Article  CAS  Google Scholar 

  16. Mirzayan R, Panossian V, Avedian R, Forrester DM, Menendez LR (2001) The use of calcium sulfate in the treatment of benign bone lesions. A preliminary report. J Bone Joint Surg Am A 83(3):355–358

    Article  Google Scholar 

  17. Sencan I, Sahin I, Tuzuner T, Ozdemir D, Yildirim M, Leblebicioglu H (2005) In vitro bacterial adherence to teicoplanin and calcium sulfate-soaked bone cement. J Chemother 17(2):174–178

    PubMed  CAS  Google Scholar 

  18. Englert C, Angele P, Fierlbeck J, Dendorfer S, Schubert T, Muller R, Lienhard S, Zellner J, Nerlich M, Neumann C (2007) Conductive bone substitute material with variable antibiotic delivery. Unfallchirurg 110(5):408–413. doi:10.1007/s00113-007-1229-3

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, You X, Huo S, Li X, Fan Y, Zhang Y, Zhang W (2007) Studies on the gs impregnated calcium sulfate implants. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 24(4):802–805

    PubMed  CAS  Google Scholar 

  20. Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piattelli A (2004) Bone-defect healing with calcium-sulfate particles and cement: An experimental study in rabbit. J Biomed Mater Res B Appl Biomater 68(2):199–208. doi:10.1002/jbm.b.20012

    Article  PubMed  Google Scholar 

  21. Lillo R, Peltier LF (1956) The substitution of plaster of paris rods for portions of the diaphysis of the radius in dogs. Surg Forum 6:556–558

    PubMed  CAS  Google Scholar 

  22. Cui X, Zhang B, Wang Y, Gao Y (2008) Effects of chitosan-coated pressed calcium sulfate pellet combined with recombinant human bone morphogenetic protein 2 on restoration of segmental bone defect. J Craniofac Surg 19(2):459–465. doi:10.1097/SCS.0b013e31815ca034

    Article  PubMed  Google Scholar 

  23. Turner TM, Urban RM, Hall DJ, Chye PC, Segreti J, Gitelis S (2005) Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res 437:97–104 doi:00003086-200508000-00017

    Article  PubMed  Google Scholar 

  24. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  25. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462. doi:10.1007/s00441-006-0308-z

    Article  PubMed  CAS  Google Scholar 

  26. Makinen TJ, Veiranto M, Knuuti J, Jalava J, Tormala P, Aro HT (2005) Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to staphylococcus aureus. Bone 36(2):292–299. doi:10.1016/j.bone.2004.11.009

    Article  PubMed  CAS  Google Scholar 

  27. Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R (2006) Isolation of mesenchymal stem cells from g-csf-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transpl 37(10):967–976. doi:10.1038/sj.bmt.1705358

    Article  CAS  Google Scholar 

  28. Beardmore AA, Brooks DE, Wenke JC, Thomas DB (2005) Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am 87(1):107–112. doi:10.2106/JBJS.C.01670

    Article  PubMed  Google Scholar 

  29. Mader JT, Shirtliff ME, Bergquist SC, Calhoun J (1999) Antimicrobial treatment of chronic osteomyelitis. Clin Orthop Relat Res 360:47–65

    Article  PubMed  Google Scholar 

  30. Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ (2001) Biomaterial-associated infection of gentamicin-loaded pmma beads in orthopaedic revision surgery. J Antimicrob Chemother 47(6):885–891

    Article  PubMed  CAS  Google Scholar 

  31. Peltier LF (2001) The use of plaster of paris to fill large defects in bone: a preliminary report. 1959. Clin Orthop Relat Res 382:3–5

    Article  PubMed  Google Scholar 

  32. Shaffer CD, App GR (1971) The use of plaster of paris in treating infrabony periodontal defects in humans. J Periodontol 42(11):685–690

    PubMed  CAS  Google Scholar 

  33. Furlaneto FA, Nagata MJ, Fucini SE, Deliberador TM, Okamoto T, Messora MR (2007) Bone healing in critical-size defects treated with bioactive glass/calcium sulfate: A histologic and histometric study in rat calvaria. Clin Oral Implants Res 18(3):311–318. doi:10.1111/j.1600-0501.2006.01331.x

    Article  PubMed  Google Scholar 

  34. Gao C, Huo S, Li X, You X, Zhang Y, Gao J (2007) Characteristics of calcium sulfate/gelatin composite biomaterials for bone repair. J Biomater Sci Polym Ed 18(7):799–824. doi:10.1163/156856207781367710

    Article  PubMed  CAS  Google Scholar 

  35. Bodde EW, Boerman OC, Russel FG, Mikos AG, Spauwen PH, Jansen JA (2008) The kinetic and biological activity of different loaded rhbmp-2 calcium phosphate cement implants in rats. J Biomed Mater Res A 87(3):780–791. doi:10.1002/jbm.a.31830

    PubMed  Google Scholar 

  36. Ruhe PQ, Boerman OC, Russel FG, Spauwen PH, Mikos AG, Jansen JA (2005) Controlled release of rhbmp-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release 106(1–2):162–171. doi:10.1016/j.jconrel.2005.04.018

    Article  PubMed  CAS  Google Scholar 

  37. Warren SM, Nacamuli RK, Song HM, Longaker MT (2004) Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 15(1):34–37

    Article  PubMed  Google Scholar 

  38. Herron S, Thordarson DB, Winet H, Luk A, Bao JY (2003) Ingrowth of bone into absorbable bone cement: an in vivo microscopic evaluation. Am J Orthop (Belle Mead NJ) 32(12):581–584

    Google Scholar 

  39. Tamimi FM, Torres J, Tresguerres I, Clemente C, Lopez-Cabarcos E, Blanco LJ (2006) Bone augmentation in rabbit calvariae: comparative study between bio-oss and a novel beta-tcp/dcpd granulate. J Clin Periodontol 33(12):922–928. doi:10.1111/j.1600-051X.2006.01004.x

    Article  PubMed  CAS  Google Scholar 

  40. Cunningham NS, Paralkar V, Reddi AH (1992) Osteogenin and recombinant bone morphogenetic protein 2b are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mrna expression. Proc Natl Acad Sci USA 89(24):11740–11744

    Article  PubMed  CAS  Google Scholar 

  41. Uludag H, Gao T, Porter TJ, Friess W, Wozney JM (2001) Delivery systems for bmps: factors contributing to protein retention at an application site. J Bone Joint Surg Am A 83(Suppl 1 (Pt 2)):S128–S135

    Google Scholar 

  42. Chen X, Schmidt AH, Mahjouri S, Polly DW Jr, Lew WD (2007) Union of a chronically infected internally stabilized segmental defect in the rat femur after debridement and application of rhbmp-2 and systemic antibiotic. J Orthop Trauma 21(10):693–700. doi:10.1097/BOT.0b013e31815a7e91

    Article  PubMed  Google Scholar 

  43. Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE (1996) Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res 333:245–251

    Article  PubMed  Google Scholar 

  44. Haleem AA, Rouse MS, Lewallen DG, Hanssen AD, Steckelberg JM, Patel R (2004) Gentamicin and vancomycin do not impair experimental fracture healing. Clin Orthop Relat Res 427:22–24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, X., Li, H. et al. Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg 131, 991–1001 (2011). https://doi.org/10.1007/s00402-011-1269-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1269-6

Keywords

Navigation