Skip to main content

Advertisement

Log in

Locking plates have increased torsional stiffness compared to standard plates in a segmental defect model of clavicle fracture

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of locked plate technology to resist torsion in a clavicle fracture model of segmental bone loss.

Methods

Forty-four synthetic clavicles were repaired with either 3.5 mm locked compression plate (LCP) or 3.5 mm low-contact dynamic compression plate (LCDCP). They were divided into two groups of 22 specimens. Each group was tested to evaluate torsional stiffness, load at failure, deflection at failure, and unconstrained plate motion.

Results

LCP group showed significantly greater stiffness in torsion compared to the LCDCP group (p < 0.001). Average difference was 20.9%. Load at failure was not significantly different (p < 0.07). Deflection at failure was significantly less for the LCP group (p < 0.03). Unconstrained motion or plate ‘looseness’ was significantly less for the LCP group (p < 0.017).

Conclusions

In a simulated model of segmental clavicle fracture, a LCP provided more stiffness and less deflection than a low-contact dynamic compression plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nordqvist A, Petersson C (1994) The incidence of fractures of the clavicle. Clin Ortho 300:127–132

    Google Scholar 

  2. McKee MD, Pedersen EM, Jones C et al (2006) Deficits following nonoperative treatment of displaced midshaft clavicular fractures. J Bone Joint Surg Am 88-A(1):35–40

    Article  Google Scholar 

  3. Hill JM, McGuire MH, Crosby LA (1997) Closed treatment of displaced middle-third fractures of the clavicle gives poor results. J Bone Joint Surg Br 79:537–539

    Article  PubMed  CAS  Google Scholar 

  4. Nowak J, Holgersson M, Larsson S (2005) Sequelae from clavicular fractures are common. Acta Orthop 76(4):496–502

    Article  PubMed  Google Scholar 

  5. McKee M, Wild L, Schemitsch E (2003) Midshaft malunions of the clavicle. J Bone Joint Surg Am 85A(5):790–797

    Google Scholar 

  6. Canadian Orthopaedic Trauma Society (2007) Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures. A multicenter, randomized clinical trial. J Bone Joint Surg Am 89-A(1):1–10

    Article  Google Scholar 

  7. Celestre P, Robertson C, Mahar A et al (2008) Biomechanical evaluation of clavicle fracture plating techniques: does a locking plate provide improved stability. J Orthop Trauma 22(4):241–247

    Article  PubMed  Google Scholar 

  8. Robertson C, Celestre P, Mahar A, Swartz A (2009) Reconstruction plates for stabilization of mid-shaft clavicle fractures: differences between nonlocked and locked plates in two different positions. J Shoulder Elbow Surg 18:204–209

    Article  PubMed  Google Scholar 

  9. Iannotti M, Crosby L, Stafford P et al (2002) Effects of plate location, selection on the stability of midshaft clavicle osteotomies: a biomechanical study. J Shoulder Elbow Surg 11:457–462

    Article  PubMed  CAS  Google Scholar 

  10. Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs, tibias. J Biomech 34:773–781

    Article  PubMed  CAS  Google Scholar 

  11. Cristofolini L, Viceconti M (2000) Mechanical validation of whole bone composite tibia models. J Biomech 33:279–288

    Article  PubMed  CAS  Google Scholar 

  12. Cristofolini L, Viceconti M, Cappello A, Toni A (1996) Mechanical validation of whole bone composite femur models. J Biomech 29(4):525–535

    Article  PubMed  CAS  Google Scholar 

  13. Mazzocca AD, Caputo AE, Browner BD, Mast JW, Mendes MW (2003) Principles of internal fixation in skeletal trauma. In: Browner BD, Jupiter JB, Levine AM, Trafton PG (eds) Skeletal trauma: basic science, management, and reconstruction, 3rd edn. Saunders Philadelphia, PA, p 215

    Google Scholar 

  14. Sahara W, Sugamoto K, Murai M et al (2007) Three-dimensional clavicular and acromioclavicular rotations during arm abduction using vertically open MRI. J Orthop Res 25:1243–1249

    Article  PubMed  Google Scholar 

  15. Ludewig PM, Behrens SA, Meyer SM et al (2004) Three-dimensional clavicular motion during arm elevation: reliability and descriptive data. J Orthop Sports Phys Ther 34:140–149

    Article  PubMed  Google Scholar 

  16. Warner JJP (2009) Audio-Digest Orthopaedics 32(2). http://www.cme-ce-summaries.com/orthopaedics/or3202.html

  17. Bowman SM, Zeind J, Gibson LJ et al (1996) The tensile behavior of demineralized bovine cortical bone. J Biomech 29(11):1497–1501

    Article  PubMed  CAS  Google Scholar 

  18. Klos K, Sauer S, Hoffmeier K et al (2009) Biomechanical evaluation of plate osteosynthesis of distal fibula fractures with biodegradable devices. Foot Ankle Int 30(3):243–251

    Article  PubMed  Google Scholar 

  19. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS (2003) Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury 34(Suppl 2):B11–B19

    Article  PubMed  Google Scholar 

  20. Hipps JA, Hayes WC (2003) Biomechanics of fractures. In: Browner BD, Jupiter JB, Levine AM, Trafton PG (eds) Skeletal trauma: basic science, management, and reconstruction, vol 1, 3rd edn. p 112

  21. Filipowicz D, Lanz O, McLaughlin R et al (2009) A biomechanical comparison of 3.5 locking compression plate fixation to 3.5 limited contact dynamic compression plate fixation in a canine cadaveric distal humeral metaphyseal gap model. Vet Comp Orthop Traumatol 22(4):270–277

    PubMed  CAS  Google Scholar 

  22. Greiwe RM, Archdeacon MT (2007) Locking plate technology: current concepts. J Knee Surg 20(1):50–55

    PubMed  Google Scholar 

  23. Smith WR, Ziran BH, Anglen JO, Stahel PF (2007) Locking plates: tips and tricks. J Bone Joint Surg 89A(10):2298–2307

    Google Scholar 

  24. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg 91(A):1985–1994

    Article  PubMed  Google Scholar 

  25. Inman VT, Saunders JB, Abbott LC (1994) Observations of the function of the shoulder joint. J Bone Joint Surg Am 26A:1–30

    Google Scholar 

  26. Yinger K, Scalise J, Olson S et al (2003) Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma 17:481–487

    Article  PubMed  Google Scholar 

  27. Adamczyk MJ, Odell T, Oka R (2007) Biomechanical stability of bioabsorbable screws for fixation of acetabular osteotomies. J Pediatr Orthop 27:314–318

    Article  PubMed  Google Scholar 

  28. Amander MW, Reeves A, MacLeod IAR et al (2008) A biomechanical comparison of plate configuration in distal humerus fractures. J Orthop Trauma 22(5):332–336

    Article  Google Scholar 

  29. Lee SS, Mahar AT, Miesen D et al (2002) Displaced pediatric supracondylar humerus fractures: biomechanical analysis of percutaneous pinning techniques. J Pediatr Orthop 22:440–443

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was underwritten by a grant from Synthes, Inc. (Paoli, PA). The authors also recognize Dr. Steven Goldstein (U. Michigan) for his guidance and Mr. Jonathan Heifetz (Presque Isle Orthopedic Lab, Erie, PA) for his assistance with specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy E. Cooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, R., Englund, R., Lubahn, J. et al. Locking plates have increased torsional stiffness compared to standard plates in a segmental defect model of clavicle fracture. Arch Orthop Trauma Surg 131, 841–847 (2011). https://doi.org/10.1007/s00402-010-1240-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1240-y

Keywords

Navigation