Skip to main content

Advertisement

Log in

Intra-discal vancomycin-loaded PLGA microsphere injection for MRSA discitis: an experimental study

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objective

To prepare the vancomycin hydrochloride (VA)-loaded poly lactic acid-glycolic acid (PLGA) copolymer microsphere by the multiple emulsion method and evaluate its therapeutic effects on infective discitis.

Methods

Firstly, the particle diameter distribution, shape, encapsulation efficiency, drug-loaded dosage and release curve of VA-PLGA microspheres were evaluated in vitro. Rabbits with methicillin-resistant Staphylococcus aureus infective discitis were treated with VA-PLGA intra-discal injection. Meanwhile, VA intravenous injection, blank PLGA microspheres intra-discal injection served as controls. Thirty days later, therapeutic effects were evaluated through X-ray radiophotography, histopathological and bacteriological examination.

Results

Mean particle diameter was between 61.57 ± 4.37 and 67.45 ± 8.13 μm, and mean encapsulation efficiency was between 60.20 ± 1.61 and 75.27 ± 1.60 %m/m. In vitro release experiment showed that the release time was over 30 days. The result of in vivo experiment showed that inflammatory reaction in the VA-PLGA intra-discal injection group was milder than the intravenous injection group (P < 0.05), also with less inflammation. The bacterial count was also significantly lower (1.02 × 103 ± 1.22 × 103 CFU/g) than the intravenous injection group (7.51 × 104 ± 7.16 × 104 CFU/g) (P < 0.05). Besides these data, the amount used in VA-PLGA intra-discal injection group is about 20 mg, and that used in the intravenous injection group is about 2.4 g. So, we just use 1/120 of VA i.v. to obtain the better results with our microparticles.

Conclusion

Intra-discal injection with VA-PLGA sustained-release microspheres can use much less dosage, and effectively control and reduce infective discitis, and the therapeutic effect is superior to that of intravenous injection. A need for the clinical trials will be carried out in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan IA, Vaccaro AR, Zlotolow DA (1999) Management of vertebral diskitis and osteomyelitis. Orthopedics 22(8):758–765

    CAS  PubMed  Google Scholar 

  2. Lam KS, Webb JK (2004) Discitis. Hosp Med 65(5):280–286

    PubMed  Google Scholar 

  3. Wirtz DC, Genius I, Wildberger JE et al (2000) Diagnostic and therapeutic management of lumbar and thoracic spondylodiscitis—an evaluation of 59 cases. Arch Orthop Trauma Surg 120(5–6):245–251

    Article  CAS  PubMed  Google Scholar 

  4. Hadjipavlou AG, Mader JT, Necessary JT et al (2000) Haematogenous pyogenic spinal infections and their surgical management. Spine 25(13):1668–1679

    Article  CAS  PubMed  Google Scholar 

  5. Hopkinson N, Stevenson J, Benjamin S (2001) A case ascertainment study of septic discitis: clinical, microbiological and radiological features. Q J Med 94:465–470

    CAS  Google Scholar 

  6. Johnson KD, Johnston DW (1989) Orthopedic experience with methicillin-resistant Staphylococcus aureus during a hospital epidemic. Clin Orthop 212:281–288

    Google Scholar 

  7. Osti OL, Fraser RD, Vernon-Roberts B (1990) Discitis after discography. The role of prophylactic antibiotics. J Bone Joint Surg [Br] 72:271–274

    CAS  Google Scholar 

  8. Pobiel RS, Schellhas KP, Pollei SR et al (2006) Diskography: infectious complications from a series of 12,634 cases. Am J Neuroradiol 27:1930–1932

    CAS  PubMed  Google Scholar 

  9. Staatz G, Adam GB et al (1998) Spondylodiskitic abscesses: CT-guided percutaneous catheter drainage. Radiology 208(2):363–367

    CAS  PubMed  Google Scholar 

  10. Mendel V, Simanovski HJ, Scholz HC et al (2005) Therapy with gentamycin-PMMA beads, gentamycin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Arch Orthop Trauma Surg 125:363–368

    Article  CAS  PubMed  Google Scholar 

  11. Cevher E, Orhan Z, Mülazımoğlu L et al (2006) Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres. Int J Pharm 317:127–135

    Article  CAS  PubMed  Google Scholar 

  12. Orhan Z, Cevher E, Yıldız A et al (2010) Biodegradable microspherical implants containing teicoplanin for the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. Arch Orthop Trauma Surg 130:135–142

  13. Jacob E, Setterstrom JA, Bach DE et al (1991) Evaluation of biodegradable ampicillin anhydrate microcapsules for local treatment of experimental staphylococcal osteomyelitis. Clin Orthop Relat Res 267:237–244

    PubMed  Google Scholar 

  14. Virto MR, Elorza B, Torrado S et al (2007) Improvement of gentamicin poly(d,l-lactic-co-glycolic acid) microspheres for treatment of osteomyelitis induced by orthopedic procedures. Biomaterials 28(5):877–885

    Article  CAS  PubMed  Google Scholar 

  15. Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res 437:91–96

    Article  PubMed  Google Scholar 

  16. Ozalp Y, Ozdemir N, Kocagöz S et al (2001) Controlled release of vancomycin from biodegradable microcapsules. J Microencapsul 18(1):89–110

    Article  CAS  PubMed  Google Scholar 

  17. Jameela SR, Suma N, Jayakrishnan A (1997) Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. J Biomater Sci Polym Ed 8(6):457–466

    Article  CAS  PubMed  Google Scholar 

  18. Yang YY, Chung TS, Ng NP (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22(3):231–241

    Article  CAS  PubMed  Google Scholar 

  19. Willems PC, Jacobs W, Duinkerke ES et al (2004) Lumbar discography: should we use prophylactic antibiotics? A study of 435 consecutive discograms and a systematic review of the literature. J Spinal Disord Tech 17:243–247

    Article  PubMed  Google Scholar 

  20. Buchholz HW, Engelbrecht H (1970) Depot effects of various antibiotics mixed with palacos resins. Chirurg 41:511–515

    CAS  PubMed  Google Scholar 

  21. Aimin C, Chunlin H, Juliang B et al (1999) Antibiotic loaded chitosan bar: an in vitro, in vivo study of a possible treatment for osteomyelitis. Clin Orthop 366:239–247

    Article  PubMed  Google Scholar 

  22. Ambrose CG, Gogola GR, Clyburn TA et al (2003) Antibiotic microspheres: preliminary testing for potential treatment of osteomyelitis. Clin Orthop 415:279–285

    Article  PubMed  Google Scholar 

  23. Calhoun JH, Mader JT (1997) Treatment of osteomyelitis with a biodegradable antibiotic implant. Clin Orthop 341:206–214

    PubMed  Google Scholar 

  24. Garvin KL, Miyano JA, Robinson D et al (1994) Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis: a canine model. J Bone Joint Surg Am 76(10):1500–1506

    CAS  PubMed  Google Scholar 

  25. Kanellakopoulou K, Giamarellos-Bourboulis E (2000) Carrier systems for the local delivery of antibiotics in bone infections. Drugs 59(6):1223–1232

    Article  CAS  PubMed  Google Scholar 

  26. Singh M, Shirley B, Bajwa K et al (2001) Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles. J Control Release 70:21–28

    Article  CAS  PubMed  Google Scholar 

  27. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  CAS  PubMed  Google Scholar 

  28. Prior S, Gamazo C, Irache JM et al (2000) Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int J Pharm 196:115–125

    Article  CAS  PubMed  Google Scholar 

  29. Blanco-Prieto MJ, Lecaroz C, Renedo MJ et al (2002) In vitro evaluation of gentamicin released from microparticles. Int J Pharm 242:203–206

    Article  CAS  PubMed  Google Scholar 

  30. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microspheres preparation process technology. J Control Release 102:313–332

    Article  CAS  PubMed  Google Scholar 

  31. Ramchandani M, Pankaskie M, Robinson D (1997) The influence of manufacturing procedure on the degradation of poly(lactide-co-glycolide) 85:15 and 50:50 implants. J Control Release 43:161–173

    Article  Google Scholar 

  32. Siepmann J, Faisant N, Akiki J et al (2004) Effect of the sizes of biodegradable microparticles of drug release: experiment and theory. J Control Release 96:123–134

    Article  CAS  PubMed  Google Scholar 

  33. Klose D, Siepmann F, Elkharraz K et al (2006) How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm 314:198–206

    Article  CAS  PubMed  Google Scholar 

  34. Blanco-Prieto MJ, Leo E, Delie FG et al (1996) Study of the influence of several stabilizing agents on the entrapment and in vitro release of pBC 264 from poly(lactide-co-glycolide) microspheres prepared by a W/O/W solvent evaporation method. Pharm Res 13(7):1127–1129

    Article  CAS  PubMed  Google Scholar 

  35. Bierry G, Jehl F, Prévost G et al (2008) Percutaneous inoculated rabbit model of intervertebral disc space infection: magnetic resonance imaging features with pathological correlation. Joint Bone Spine 75(4):465–470

    Article  PubMed  Google Scholar 

  36. Scuderi GJ, Greenberg SS, Banovac K (1993) Penetration of glycopeptide antibiotics in nucleus pulposus. Spine (Phila Pa 1976) 18(14):2039–2042

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Ni, B., Zhu, Z. et al. Intra-discal vancomycin-loaded PLGA microsphere injection for MRSA discitis: an experimental study. Arch Orthop Trauma Surg 131, 111–119 (2011). https://doi.org/10.1007/s00402-010-1154-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1154-8

Keywords

Navigation