Skip to main content

Advertisement

Log in

The effects of high-dose, long-term alendronate treatment on microarchitecture and bone mineral density of compact and trabecular bone in the proximal femur of adult male rabbits

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Despite the widespread use of bisphosphonates, its effects on normal bone microarchitecture of the proximal femur are still poorly studied. The purpose of this study was to determine the effects of long-term high-dose treatment of alendronate on microstructure and bone mineral density of cancellous, cortical compact and subchondral compact bone of the femoral head and neck region in normal adult male rabbits.

Materials and methods

Thirty-two adult, male rabbits were randomized into and were treated with either alendronate or placebo for 6 and 12 months. Micro-QCT measurements were taken in the (1) trabecular region, (2) cortical region of the femoral neck and (3) the subchondral region of the femoral head.

Results

In the trabecular region of the femoral head, alendronate treatment significantly increased vBMD at 6 and 12 months (+21.0%, p < 0.05 and +26.8%, p < 0.05, respectively) and BVF (29.6%, p < 0.05 and 35.6%, p < 0.05, respectively) with significantly altered bone microarchitecture when compared with their placebo group; 6- and 12-month alendronate treatment significantly increased the vBMD and thickness and decreased the porosity of the subchondral bone in the femoral head.

Conclusion

High-dose alendronate treatment led to significant and differential changes in bone microarchitecture in trabecular, cortical and subchondral bone of the proximal femur of adult male rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Orwoll ES (2006) Osteoporosis in men. Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th edn. ASBMR, Washington, DC, pp 290–293

    Google Scholar 

  2. Melton LJ 3rd (1988) Epidemiology of Fractures. In: Riggs BL, Melton LJ 3rd (eds) Osteoporosis: etiology, diagnosis and management. Raven Press, New York

    Google Scholar 

  3. Stresing V, Daubine F, Benzaid I, Monkkonen H, Clezardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257(1):16–35

    Article  CAS  PubMed  Google Scholar 

  4. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352

    Article  CAS  PubMed  Google Scholar 

  5. Black DM, DE Thompson, Bauer DC, Ensrud K, Musliner T, Hochberg MC et al (2000) Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 85(11):4118–4124

    Article  CAS  PubMed  Google Scholar 

  6. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349(13):1216–1226

    Article  CAS  PubMed  Google Scholar 

  7. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323

    Article  CAS  PubMed  Google Scholar 

  8. Watts NBR, Smith C, Li Z, Eastell R, Pack S, Lindsay R (2000) BMD changes explains only a fraction of the observed fracture risk reduction in risedronate-treated patients. Osteoporos Int 11(Suppl 2)(546):S203

    Google Scholar 

  9. Miller PD, McClung M (1996) Prediction of fracture risk. I: Bone density. Am J Med Sci 312(6):257–259

    Article  CAS  PubMed  Google Scholar 

  10. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  11. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466

    Article  CAS  PubMed  Google Scholar 

  12. (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795

  13. Rodan G, Reszka A, Golub E, Rizzoli R (2004) Bone safety of long-term bisphosphonate treatment. Curr Med Res Opin 20(8):1291–1300

    Article  CAS  PubMed  Google Scholar 

  14. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29(2):185–191

    Article  CAS  PubMed  Google Scholar 

  15. Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L et al (2005) Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 36(1):150–158

    Article  CAS  PubMed  Google Scholar 

  16. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 22(1):149–157

    Article  CAS  PubMed  Google Scholar 

  17. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28(5):524–531

    Article  CAS  PubMed  Google Scholar 

  18. Mosekilde L, Thomsen JS, Mackey MS, Phipps RJ (2000) Treatment with risedronate or alendronate prevents hind-limb immobilization-induced loss of bone density and strength in adult female rats. Bone 27(5):639–645

    Article  CAS  PubMed  Google Scholar 

  19. Pataki A, Muller K, Green JR, Ma YF, Li QN, Jee WS (1997) Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 249(4):458–468

    Article  CAS  PubMed  Google Scholar 

  20. Kippo K, Hannuniemi R, Isaksson P, Lauren L, Osterman T, Peng Z et al (1998) Clodronate prevents osteopenia and loss of trabecular connectivity in estrogen-deficient rats. J Bone Miner Res 13(2):287–296

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi S, Shimizu T, Mehdi R, Nawata M, Kojima S, Tsutsumimoto T et al (1999) Advantages of concurrent use of anabolic and antiresorptive agents over single use of these agents in increasing trabecular bone volume, connectivity, and biomechanical competence of rat vertebrae. Bone 25(6):703–712

    Article  CAS  PubMed  Google Scholar 

  22. Komatsubara S, Mori S, Mashiba T, Ito M, Li J, Kaji Y et al (2003) Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res 18(3):512–520

    Article  CAS  PubMed  Google Scholar 

  23. Ding M, Day JS, Burr DB, Mashiba T, Hirano T, Weinans H et al (2003) Canine cancellous bone microarchitecture after one year of high-dose bisphosphonates. Calcif Tissue Int 72(6):737–744

    Article  CAS  PubMed  Google Scholar 

  24. McCreadie BR, Goulet RW, Feldkamp LA, Goldstein SA (2001) Hierarchical structure of bone and micro-computed tomography. Adv Exp Med Biol 496:67–83

    CAS  PubMed  Google Scholar 

  25. Barou O, Valentin D, Vico L, Tirode C, Barbier A, Alexandre C et al (2002) High-resolution three-dimensional micro-computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol 37(1):40–46

    Article  PubMed  Google Scholar 

  26. Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 85(6):906–912

    CAS  PubMed  Google Scholar 

  27. Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Gati JS et al (2004) High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 12(8):614–626

    Article  PubMed  Google Scholar 

  28. Wachsmuth L, Engelke K (2004) High-resolution imaging of osteoarthritis using microcomputed tomography. Methods Mol Med 101:231–248

    PubMed  Google Scholar 

  29. Hofstaetter JG, Wang J, Yan J, Glimcher MJ (2006) Changes in bone microarchitecture and bone mineral density following experimental osteonecrosis of the hip in rabbits. Cells Tissues Organs 184(3–4):138–147

    Article  PubMed  Google Scholar 

  30. Thompson DD, Seedor JG, Quartuccio H, Solomon H, Fioravanti C, Davidson J et al (1992) The bisphosphonate, alendronate, prevents bone loss in ovariectomized baboons. J Bone Miner Res 7(8):951–960

    Article  CAS  PubMed  Google Scholar 

  31. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17(4 Suppl):125S–133S

    CAS  PubMed  Google Scholar 

  32. Mosekilde L (1995) Assessing bone quality–animal models in preclinical osteoporosis research. Bone 17(4 Suppl):343S–352S

    CAS  PubMed  Google Scholar 

  33. Rodgers JB, Monier-Faugere MC, Malluche H (1993) Animal models for the study of bone loss after cessation of ovarian function. Bone 14(3):369–377

    Article  CAS  PubMed  Google Scholar 

  34. Kimmel DB (2001) Animal models for in vivo experimentation in osteoporosis research. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 29–47

    Chapter  Google Scholar 

  35. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O et al (1988) Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol 255(4 Pt 1):E416–E421

    CAS  PubMed  Google Scholar 

  36. Rao DR, Sunki GR, Johnson WM, Chen CP (1977) Postnatal Growth of New Zealand White Rabbit (Oryctolagus cuniculus). J Anim Sci 44:1021–1025

    CAS  PubMed  Google Scholar 

  37. Hofstaetter JG, Wang J, Yan J, Glimcher MJ (2008) The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits. Osteoarthritis Cartilage

  38. Peter C, Rodan GA (1999) Preclinical safety profile of alendronate. Int J Clin Pract Suppl 101:3–8

    CAS  PubMed  Google Scholar 

  39. Migliorati CA, Schubert MM, Peterson DE, Seneda LM (2005) Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer 104(1):83–93

    Article  CAS  PubMed  Google Scholar 

  40. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber 9:62–66

    Article  Google Scholar 

  41. Sawka AM, Thabane L, Papaioannou A, Gafni A, Hanley DA, Adachi JD (2005) A systematic review of the effect of alendronate on bone mineral density in men. J Clin Densitom 8(1):7–13

    Article  PubMed  Google Scholar 

  42. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49(1):20–26

    Article  CAS  PubMed  Google Scholar 

  43. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206

    Article  CAS  PubMed  Google Scholar 

  44. Feik SA, Thomas CD, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191(Pt 3):407–416

    Article  PubMed  Google Scholar 

  45. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14(1):111–119

    Article  CAS  PubMed  Google Scholar 

  46. Ding M, Hvid I (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26(3):291–295

    Article  CAS  PubMed  Google Scholar 

  47. Holzer G, Skrbensky G, Holzer L, Pichl W (2008) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck stability. J Bone Miner Res

  48. Cooper D, Turinsky A, Sensen C, Hallgrimsson B (2007) Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int 80(3):211–219

    Article  CAS  PubMed  Google Scholar 

  49. Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837–844

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen G. Hofstaetter.

Additional information

This study was performed at the Laboratory for Skeletal Disorders and Rehabilitation, Department of Orthopedic Surgery, Children’s Hospital and Harvard Medical School.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstaetter, J.G., Wang, J., Hofstaetter, S.G. et al. The effects of high-dose, long-term alendronate treatment on microarchitecture and bone mineral density of compact and trabecular bone in the proximal femur of adult male rabbits. Arch Orthop Trauma Surg 130, 937–944 (2010). https://doi.org/10.1007/s00402-010-1116-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1116-1

Keywords

Navigation