Skip to main content
Log in

The gap technique does not rotate the femur parallel to the epicondylar axis

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA.

Method

In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint.

Results

In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside’s line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by −0.6° ± 2.9° (−7.4°–5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°.

Conclusion

Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  PubMed  Google Scholar 

  2. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 392:46–55

    Article  PubMed  Google Scholar 

  3. Insall JN, Scuderi GR, Komistek RD, Math K, Dennis DA, Anderson DT (2002) Correlation between condylar lift-off and femoral component alignment. Clin Orthop Relat Res 403:143–152

    Article  PubMed  Google Scholar 

  4. Scuderi GR, Komistek RD, Dennis DA, Insall JN (2003) The impact of femoral component rotational alignment on condylar lift-off. Clin Orthop Relat Res 410:148–154

    Article  PubMed  Google Scholar 

  5. Oberst M, Bertsch C, Konrad G, Lahm A, Holz U (2008) CT analysis after navigated versus conventional implantation of TKA. Arch Orthop Trauma Surg 128(6):561–566

    Article  PubMed  Google Scholar 

  6. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45

    Article  PubMed  Google Scholar 

  7. Olcott CW, Scott RD (1999) The Ranawat Award. Femoral component rotation during total knee arthroplasty. Clin Orthop Relat Res 367:39–42

    Article  PubMed  Google Scholar 

  8. Boisgard S, Moreau PE, Descamps S, Courtalhiac C, Silbert H, Moreel P et al (2003) Computed tomographic study of the posterior condylar angle in arthritic knees: its use in the rotational positioning of the femoral implant of total knee prostheses. Surg Radiol Anat 25(3–4):330–334

    Article  CAS  PubMed  Google Scholar 

  9. Nagamine R, Miura H, Inoue Y, Urabe K, Matsuda S, Okamoto Y et al (1998) Reliability of the anteroposterior axis and the posterior condylar axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Orthop Sci 3(4):194–198

    Article  CAS  PubMed  Google Scholar 

  10. van der Linden-van der Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG (2008) Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg 13(4):200–206

  11. Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466(11):2751–2755

    Article  PubMed  Google Scholar 

  12. Kim YH, Kim JS (2004) Comparison of anterior-posterior-glide and rotating-platform low contact stress mobile-bearing total knee arthroplasties. J Bone Joint Surg Am 86-A(6):1239–1247

    PubMed  Google Scholar 

  13. Dennis DA (2008) Measured resection: an outdated technique in total knee arthroplasty. Orthopedics 31(9):940–944

    Article  PubMed  Google Scholar 

  14. Chiavetta J, Fehring TK, Odum S, Griffin W, Mason JB (2006) Importance of a balanced-gap technique in rotating-platform knees. Orthopedics 29(9 Suppl):S45–S48

    PubMed  Google Scholar 

  15. Vogt JC, Saarbach C (2009) LCS mobile-bearing total knee replacement. A 10-year’s follow-up study. Orthop Traumatol Surg Res 95(3):177–182

    Article  PubMed  Google Scholar 

  16. Heesterbeek PJ, Jacobs WC, Wymenga AB (2009) Effects of the balanced gap technique on femoral component rotation in TKA. Clin Orthop Relat Res 467(4):1015–1022

    Article  PubMed  Google Scholar 

  17. Winemaker MJ (2002) Perfect balance in total knee arthroplasty: the elusive compromise. J Arthroplasty 17(1):2–10

    Article  CAS  PubMed  Google Scholar 

  18. Schnurr C, Nessler J, Konig DP (2008) Is referencing the posterior condyles sufficient to achieve a rectangular flexion gap in total knee arthroplasty? Int Orthop Oct (epub ahead of print)

  19. Matziolis G, Krocker D, Weiss U, Tohtz S, Perka C (2007) A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg Am 89(2):236–243

    Article  PubMed  Google Scholar 

  20. Matziolis G, Krocker D, Tohtz S, Perka C (2006) Variance of identification of femoral epicondyles in navigated total knee arthroplasty. Orthopade 35(8):848–852

    Article  CAS  PubMed  Google Scholar 

  21. Witoolkollachit P, Seubchompoo O (2008) The comparison of femoral component rotational alignment with transepicondylar axis in mobile bearing TKA, CT-scan study. J Med Assoc Thai 91(7):1051–1058

    PubMed  Google Scholar 

  22. Wai Hung CL, Wai PY, Kwong YC, Hon BL, Lei Sha LW, Ho Man SW (2009) Interobserver and intraobserver error in distal femur transepicondylar axis measurement with computed tomography. J Arthroplasty 24(1):96–100

    Article  PubMed  Google Scholar 

  23. Romero J, Stahelin T, Binkert C, Pfirrmann C, Hodler J, Kessler O (2007) The clinical consequences of flexion gap asymmetry in total knee arthroplasty. J Arthroplasty 22(2):235–240

    Article  PubMed  Google Scholar 

  24. Wasielewski RC, Galat DD, Komistek RD (2005) Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients. J Biomech 38(2):333–339

    Article  PubMed  Google Scholar 

  25. Jennings LM, Bell CI, Ingham E, Komistek RD, Stone MH, Fisher J (2007) The influence of femoral condylar lift-off on the wear of artificial knee joints. Proc Inst Mech Eng H 221(3):305–314

    Article  CAS  PubMed  Google Scholar 

  26. Todo S, Blunn GW, Harrison M, Freeman MA (2003) The effect on wear of lift-off in total knee arthroplasty. Biomed Mater Eng 13(3):231–234

    PubMed  Google Scholar 

  27. Garling EH, van Eck M, Wedding T, Veeger DJ, Valstar ER, Nelissen RG (2005) Increased muscle activity to stabilise mobile bearing knees in patients with rheumatoid arthritis. Knee 12(3):177–182

    PubMed  Google Scholar 

  28. Ishii Y, Noguchi H, Matsuda Y, Takeda M, Walker SA, Komistek RD (2007) Effect of knee laxity on in vivo kinematics of meniscal-bearing knee prostheses. Knee 14(4):269–274

    Article  PubMed  Google Scholar 

  29. Stahelin T, Kessler O, Pfirrmann C, Jacob HA, Romero J (2003) Fluoroscopically assisted stress radiography for varus-valgus stability assessment in flexion after total knee arthroplasty. J Arthroplasty 18(4):513–515

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The computed tomographies were funded by Smith & Nephew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Matziolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matziolis, G., Boenicke, H., Pfiel, S. et al. The gap technique does not rotate the femur parallel to the epicondylar axis. Arch Orthop Trauma Surg 131, 163–166 (2011). https://doi.org/10.1007/s00402-010-1113-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1113-4

Keywords

Navigation