Skip to main content

Advertisement

Log in

Accuracy of minimally invasive navigated acetabular and iliosacral fracture stabilization using a targeting and noninvasive registration device

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

To assess the feasibility and accuracy of guide pin (GP) placement using a combined noninvasive patient immobilization and stereotactic targeting system in computer-assisted percutaneous pelvic fracture stabilization.

Methods

A total of 12 patients with negligible dislocated unstable pelvic fractures were enrolled in this study, performed between February 2002 and October 2005. Our original plans included 13 GP placements in the iliosacral area (SF) and 8 in the acetabular (AF) area. Patients were bedded on a noninvasive dual-vacuum immobilization device. Interventions were planned on a navigation system using intraoperatively acquired CT data. Radiodense markers glued to the skin and the immobilization device provided synchronization between virtual data set and real anatomical situation. A stereotactic targeting device was used for stabilization of GP tracking. GP positions were verified intraoperatively by CT, followed by fracture stabilization with cannulated screws.

Results

Mean GP placement accuracy according to plan: (1) SF-cohort: 2.8 mm (SD 2.0 mm, range 0.5–9.0 mm) at the bony entry point and 3.8 mm (SD 2.3 mm, range 0.6–9.5 mm) at the target point. (2) AF-cohort: 3.0 mm (SD 0.9 mm, range 1.6–4.9 mm) at the bony entry point and 3.9 mm (SD 1.9 mm, range 1.6–7.5 mm) at the target point. GP placement succeeded optimally in 11 out of 13 cases in the SF-cohort, and 6 out of 8 cases in the AF-cohort. The individual average dose–length product (DLP) per successful finished procedure was 1,576 mGy × cm (SD 812 mGy × cm, range 561–2,739 mGy × cm).

Conclusion

Our findings substantiate application of the noninvasive patient immobilization and stereotactic targeting system as effective in computer-assited percutaneous stabilization of sacral bone fractures/SI joint disruptions and coronally oriented acetabular dome fractures. We recommend according to the ALARA (as low as reasonable achievable) principle: first, the kV and mAs values have to be reduced. Second, the scanned volume has to be strictly limited to the area of interest. Third, the number of control CTs have to be minimized. Also, the IsoC might be a better choice for implant tracking below 12 cm to reduce the radiation dose to the minimum. We believe that for all high-precise GP placements in the acetabular column area, further improvements in GP guidance (inhibiting pin tip slipping and detecting intraosseous GP deflection) are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Zwienen CM et al (2004) Biomechanical comparison of sacroiliac screw techniques for unstable pelvic ring fractures. J Orthop Trauma 18(9):589–595. doi:10.1097/00005131-200410000-00002

    Article  PubMed  Google Scholar 

  2. Matta JM, Tornetta P 3rd (1996) Internal fixation of unstable pelvic ring injuries. Clin Orthop Relat Res 329:129–140. doi:10.1097/00003086-199608000-00016

    Article  PubMed  Google Scholar 

  3. Moed BR, Geer BL (2006) S2 iliosacral screw fixation for disruptions of the posterior pelvic ring: a report of 49 cases. J Orthop Trauma 20(6):378–383. doi:10.1097/00005131-200607000-00002

    Article  PubMed  Google Scholar 

  4. Reilly MC et al (2003) The effect of sacral fracture malreduction on the safe placement of iliosacral screws. J Orthop Trauma 17(2):88–94. doi:10.1097/00005131-200302000-00002

    Article  PubMed  Google Scholar 

  5. Routt ML Jr, Nork SE, Mills WJ (2000) Percutaneous fixation of pelvic ring disruptions. Clin Orthop Relat Res 375:15–29. doi:10.1097/00003086-200006000-00004

    Article  PubMed  Google Scholar 

  6. Matta JM (1998) Percutaneous fixation of acetabular fractures. J Orthop Trauma 12(5):370. doi:10.1097/00005131-199806000-00016

    Article  CAS  PubMed  Google Scholar 

  7. Chang JK et al (2001) Comparative strength of three methods of fixation of transverse acetabular fractures. Clin Orthop Relat Res 392:433–441. doi:10.1097/00003086-200111000-00057

  8. Huijbregts JE et al (2004) Entrapment of the external iliac vein in a both-column acetabular fracture. J Orthop Trauma 18(9):630–633. doi:10.1097/00005131-200410000-00009

    Article  CAS  PubMed  Google Scholar 

  9. Mouhsine E et al (2005) Percutaneous retrograde screwing for stabilisation of acetabular fractures. Injury 36(11):1330–1336. doi:10.1016/j.injury.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  10. Tseng S, Tornetta P 3rd (2006) Percutaneous management of Morel-Lavallee lesions. J Bone Joint Surg Am 88(1):92–96. doi:10.2106/JBJS.E.00021

    Article  PubMed  Google Scholar 

  11. Attias N et al (2005) The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br 87(11):1520–1523. doi:10.1302/0301-620X.87B11.16614

    Article  CAS  PubMed  Google Scholar 

  12. Hinsche AF, Giannoudis PV, Smith RM (2002) Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws. Clin Orthop Relat Res 395:135–144. doi:10.1097/00003086-200202000-00014

    Article  PubMed  Google Scholar 

  13. Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207. doi:10.1097/01.blo.0000128644.46013.08

    Article  PubMed  Google Scholar 

  14. Crowl AC, Kahler DM (2002) Closed reduction and percutaneous fixation of anterior column acetabular fractures. Comput Aided Surg 7(3):169–178. doi:10.3109/10929080209146027

    Article  PubMed  Google Scholar 

  15. Hufner T et al (2004) Which navigation when? Injury 35(Suppl 1):S-A30–S-A34. doi:10.1016/j.injury.2004.05.008

    Google Scholar 

  16. Mosheiff R et al (2004) First-generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma 18(2):106–111. doi:10.1097/00005131-200402000-00009

    Article  PubMed  Google Scholar 

  17. Stockle U et al (2004) Clinical applications: pelvis. Injury 35(Suppl 1):S-A46–S-A56. doi:10.1016/j.injury.2004.05.010

    Google Scholar 

  18. Jacob AL et al (1997) Posterior pelvic ring fractures: closed reduction and percutaneous CT-guided sacroiliac screw fixation. Cardiovasc Intervent Radiol 20(4):285–294. doi:10.1007/s002709900153

    Article  CAS  PubMed  Google Scholar 

  19. Dorward NL et al (2002) The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg 16(2):110–118. doi:10.1080/02688690220131705

    Article  CAS  PubMed  Google Scholar 

  20. Bale RJ et al (2001) Osteochondral lesions of the talus: computer-assisted retrograde drilling: feasibility and accuracy in initial experiences. Radiology 218(1):278–282

    CAS  PubMed  Google Scholar 

  21. Adams L, van den Brug WP, Vogele M, Bale R. Alignment device (EasyTaxis) European Patent PHN 16.013

  22. Bale RJ et al (2002) A novel vacuum device for extremity immobilisation during digital angiography: preliminary clinical experiences. Eur Radiol 12(12):2890–2894

    CAS  PubMed  Google Scholar 

  23. Fuss M et al (2004) Repositioning accuracy of a commercially available double-vacuum whole body immobilization system for stereotactic body radiation therapy. Technol Cancer Res Treat 3(1):59–67

    PubMed  Google Scholar 

  24. Bale RJ et al (2008) Stereotactic CT-guided percutaneous stabilization of posterior pelvic ring fractures: a preclinical cadaver study. J Vasc Interv Radiol 19(7):1093–1098. doi:10.1016/j.jvir.2008.04.006

    Article  PubMed  Google Scholar 

  25. Cole JD, Blum DA, Ansel LJ (1996) Outcome after fixation of unstable posterior pelvic ring injuries. Clin Orthop Relat Res (329):160–179. doi:10.1097/00003086-199608000-00020

  26. Day CS et al (2000) Transsacral versus modified pelvic landmarks for percutaneous iliosacral screw placement: a computed tomographic analysis and cadaveric study. Am J Orthop 29(Suppl 9):16–21

    Google Scholar 

  27. Templeman D et al (1996) Internal fixation of displaced fractures of the sacrum. Clin Orthop Relat Res 329:180–185. doi:10.1097/00003086-199608000-00021

    Google Scholar 

  28. Sagi HC, Ordway NR, DiPasquale T (2004) Biomechanical analysis of fixation for vertically unstable sacroiliac dislocations with iliosacral screws and symphyseal plating. J Orthop Trauma 18(3):138–143. doi:10.1097/00005131-200403000-00002

    Article  CAS  PubMed  Google Scholar 

  29. Griffin DR et al (2003) Vertically unstable pelvic fractures fixed with percutaneous iliosacral screws: does posterior injury pattern predict fixation failure? J Orthop Trauma 17(6):399–405. doi:10.1097/00005131-200307000-00001

    Article  PubMed  Google Scholar 

  30. Latenser BA et al (1991) Improved outcome with early fixation of skeletally unstable pelvic fractures. J Trauma 31(1):28–31. doi:10.1097/00005373-199101000-00006

    Article  CAS  PubMed  Google Scholar 

  31. Wieners G et al (2005) Comparison of radiation dose and image quality of Siremobil-IsoC(3D) with a 16-slice spiral CT for diagnosis and intervention in the human pelvic bone. Rofo 177(2):258–264

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christoph Hinterleithner from the Department of Radiology, Innsbruck Medical School, for extensive technical assistance and statistical analysis and Pavle Torbica, Mag. for the detailed analysis of the specific radiation dose.

Conflict of interest statement

R. J. Bale is a (co)inventor of the EasyTaxis BodyFix immobilization system and a co-shareholder in its financial returns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto J. Bale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, R.E., Dolati, B., Larndorfer, R. et al. Accuracy of minimally invasive navigated acetabular and iliosacral fracture stabilization using a targeting and noninvasive registration device. Arch Orthop Trauma Surg 130, 223–230 (2010). https://doi.org/10.1007/s00402-009-0932-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-009-0932-7

Keywords

Navigation